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A. Conceptual framework

This section lays out a simple theoretical framework to think about the creation of

knowledge. The framework clearly shows the two key parameters to estimate empiri-

cally: the elasticity of knowledge diffusion to travel time and the elasticity of knowledge

creation to knowledge access.

Following Carlino and Kerr (2015) we consider a production function of knowledge

which includes external returns in the form of knowledge spillovers. Knowledge

output of a firm depends not only on firm’s specific characteristics as its idiosyncratic

productivity and input decisions, but also on an externality due to knowledge spillovers.

We consider a production function of knowledge of the following form:

New KnowledgeFi = f (zFi, inputsFi) × Knowledge Access
ρ
i (1)
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where New KnowledgeFi is the knowledge created by firm F located in i. The output

of Fi depends on an internal component and on an external component. The internal

component is the firm’s idiosyncratic productivity zFi and choice of inputs inputsFi.

The external component represents the externality to which all firms F in location i are

exposed to: Knowledge Accessi. This externality, Knowledge Access, represents the total

amount of knowledge spillovers that the firm is exposed to. The degree to which the

externality affects the production of knowledge is governed by the parameter ρ. If ρ is

zero then knowledge spillovers have no effect on the creation of new knowledge. On

the other hand, a positive ρ implies that, keeping productivity and inputs constant, an

increase in the level of knowledge spillovers leads to an increase in firm F’s creation of

new knowledge.

A long standing literature studies the importance of knowledge spillovers for the

creation of new knowledge.1 The concept of knowledge spillovers goes back at least to

? who explains it as one of the agglomeration forces. ? refers to knowledge spillovers as

one of the justifications for external increasing returns, and that the degree of spillovers

are dependent on physical distance. The geographic decay of spillovers is grounded in

the fact that not all knowledge is easy to codify, usually referred to as tacit knowledge,

and geographic proximity increases the degree of knowledge spillovers by facilitating

face to face interactions (Storper and Venables (2004), Glaeser (2011)). Hence, we

consider the total amount of knowledge spillovers to which the firm F in location i is

exposed to has the following functional form:

Knowledge Accessi = ∑
j

Knowledge stockj × distance
β

ij (2)

where Knowledge stockj is the total amount of knowledge in location j (which is non-

negative) that could potentially spill over to location i and distanceij is a measure of

distance from j to i. The amount of knowledge that spills over from j to i depends

1The chapters of ? and Carlino and Kerr (2015) in the Handbook of Regional and Urban Economics
provide an excellent review on the literature on knowledge spillovers, their geographic decay and
how they affect the creation of knowledge.
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on distance and the degree with which distance impedes spillovers, governed by the

parameter β. If β is zero, then distance does not affect knowledge spillovers from j to i

and all locations perfectly share the same level of Knowledge Access. On the contrary, a

negative β implies a decay in knowledge spillovers when distance increases. In other

words, a negative β implies that if we reduce the distance from j to i while keeping

every other distance constant, the amount of spillovers from j to i will weakly increase.

This theoretical framework bears resemblance to the concept of Market Access pre-

sented in Donaldson and Hornbeck (2016) and ?. If we interpret Knowledge Access as

one of the inputs in the production function of knowledge, then Knowledge Accessi

could be interpreted as a measure of Input Market Access. This measure captures how

cheaply firms in location i can access pre-existing knowledge, where the cost of ac-

cessing knowledge depends on distance between i and j. Also, Knowledge Access is

similar to a measure of network centrality. The centrality of each location i (node) is the

weighted sum of distance (edges) to every location, where the weight of each location

is given by its knowledge stock.

One assumption of the theoretical framework is that New KnowledgeFi is

multiplicative-separable on Knowledge Accessi.
2 To the extent that firm’s productiv-

ity zFi and choice of inputs inputsFi are relatively time invariant, this assumption is

not restrictive.3 However, if for example inputsFi changes with Knowledge Accessi,

then the estimated value of the elasticity would be the sum of the direct effect of

Knowledge Accessi on New KnowledgeFi (ρ) and the indirect effect through changes

in f (·).

The theoretical framework highlights the two parameters to estimate: ρ and β. Empir-

ically, we use travel time as a measure of distance to first estimate β and then conditional

2The implicit assumption is that ∂log(New KnowledgeFi)
∂log(Knowledge Accessi)

= ∂log( f (zFi , inputsFi))
∂log(Knowledge Accessi)

+ ρ = ρ, meaning that
∂log( f (zFi , inputsFi))

∂log(Knowledge Accessi)
= 0.

3In the empirical analysis we will include a firm-location fixed effect Fi that would absorb time-invariant
characteristics.
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on β we estimate ρ. Changes in travel time due to improvements in commercial avia-

tion allow us to estimate both parameters. First, we use citations between patents as a

proxy for the diffusion of knowledge. We estimate β by relating changes in travel time

between research establishments to changes in citations between them. Second, we use

the stock of patents filed by inventors in each location as proxy for each location’s stock

of knowledge. We construct a measure of knowledge access using the patent stock,

travel times and the value of β. New patents in each location proxy for new knowledge.

Changes in travel time lead to changes in knowledge access which allow us to estimate

ρ.

B. Historical context

B.1. Air transport: jet arrival

The jet aircraft was first invented in 1939 for military use, with the German Heinkel

He 178 being the first jet aircraft to fly. The first commercial flight by a jet aircraft was

in 1952 by the British Overseas Airways Corporation (BOAC) from London, UK to

Johannesburg, South Africa with a Havilland Comet 1. Nonetheless, given the amount

of accidents of the Havilland Comet 1 due to metal fatigue, jet commercial aviation did

not truly take off until the Boeing 707 entered commercial service in late 1958. The 24th

of January of 1959 represented a major milestone in the jet era: American Airlines Flight

2 flew with a Boeing 707 jet aircraft from Los Angeles to New York, the first non-stop

transcontinental commercial jet flight.4

In 1951 New York City and Los Angeles were connected with a one-stop flight in 10

hours and 20 minutes. The flight had a forced stop in Chicago and was operated with

the propeller aircraft Douglas DC-6, which had a cruise speed of 500 kmh. By 1956,

New York City and Los Angeles were connected with a non-stop flight in 8 hours and

4The reader passionate of aviation history would enjoy reading the following New York Times article
which tells the experience of the first transcontinental jet flight: https://www.nytimes.com/2009/
01/26/nyregion/26american.html
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30 minutes. This was accomplished due to the introduction of the propeller aircraft

Douglas DC-7 which had a cruise speed of 550kmh, and a change in regulation which

increased maximum flight time of a crew from 8 to 10 hours within a 24-hour window.5

In 1961, the route was covered with the jet aircraft Boeing 707 in a non-stop flight in 5

hours 15 minutes, reaching 5 hours 10 minutes in 1966. The Boeing 707 had a cruise

speed of 1000kmh, cutting travel time from New York City to Los Angeles in half

between 1951 and 1966.

B.2. Air transport: moving people, not goods

During the 1950s and 1960s, air transportation served to transport people but not goods.

Figures 2 and 1 are images (edited for better readability) from annual reports of the

Interstate Commerce Commission of 1967 and 1965 respectively. Figure 2 displays

the amount of passenger-miles for Air, Motor and Rail transportation from 1949 to

1966.6 We observe that, while transport of people by rail decreased and by motor

remained relatively constant, transport of people by air increased five-fold in a 16-year

period, which translates to around 12% compound annual growth. This illustrates the

transformative nature of this time period for air travel. In 1966, air transport accounted

for more passenger-miles than both rail and motor transportation together.

Figure 1 shows shipments in ton-miles for the period 1939 to 1964 by means of

transportation: Airways, Pipelines, Inland Waterways, Motor, Railroads. Interestingly,

we observe that air transport of goods, even if it increased, it accounted for less than

5AA and TWA had transcontinental non-stop propeller flights scheduled since at least 1954. These
flights were scheduled to take 7 hours 55 minutes, just under the maximum flight time allowed by
regulation in domestic flights: regulation impeded pilots from being on duty more than 8 hours
within a 24 hours window. Nonetheless, the propeller aircrafts used in these flights, the Douglas
DC-7 and the Lockheed Super Constellation, overheated their engines due to excessive demand
to cover the route in less than 8 hours. AA fought intensely until the CAB approved a waiver
that allowed non-stop transcontinental flights to take up to 10 hours to accomplish the non-stop
transcontinental flight. See page 16 of the edition of the 21st of June 1954 of the Aviation Week
magazine https://archive.org/details/Aviation_Week_1954-06-21/page/n7/mode/2up

6Passenger-miles is a standard unit of measurement in transport, where one passenger-mile accounts
for one person traveling one mile. The reasoning is the same for ton-miles, with one ton of goods
traveling one mile.
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0.1% of transport of goods in 1964.

The massive increase in air transportation thus mainly affected the mobilility of

people. To better understand changing travel patterns of people, in 1957, the US Census

Bureau conducted its first-ever nationwide survey of travelers.7 The results reveal the

substantial importance of air travel for businesses at the time. 11% of all business trips

rely on airplanes, while only 2% are bus and 6% railway trips, respectively.8 Given

the generally longer distances covered by airplanes, the share of air travel in terms of

passenger miles is likely to be even higher. Of all flights recorded, more than 60% is due

to business rather than leisure trips. In its early days, air travel was thus dominated by

business travelers.

Figure 1: Ton Miles
Source: Interstate Commerce Commission, Annual Report 1965. Edited by the authors

7The resulting report can be accessed here: https://babel.hathitrust.org/cgi/pt?id=uc1.

b5221822&seq=7
8A trip is considered as part of the sample if it required either on overnight stay or if the distance to the

destination exceeded 100 miles.
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Figure 2: Passenger Miles
Source: Interstate Commerce Commission, Annual Report 1967. Edited by the authors

B.3. Regulation

As explained in Borenstein and Rose (2014), in the 1930s the airline industry was seen

as suffering from coordination issues, destructive competition and entry. Additionally,

the industry was developing in a context of financial instability and increasing military

concerns post Great Depression. A strong domestic airline industry was perceived as

an interest of national defense. As consequence, the Civil Aeronautics Board (CAB) was

created in 1938 with the objective to promote, encourage and develop civil aeronautics.9

It was empowered to control entry, fares, subsidies and mergers.10 In other words,

the CAB regulated the market by deciding which airlines could fly, in which routes

they could operate, the price that they charged in each route, the structure of subsidies

and merger decisions. The CAB regulated the airline industry in a barely unchanged

manner until it ceased to exist in 1985.

When the CAB was created, it conceived special rights to the existing airlines over

the connections they were operating. The CAB did not permit entry of new airlines on

interstate routes and gradually allowed current airlines to expand their routes. The

9The CAB was a federal agency hence, in principle, would not have control over intrastate routes.
Nonetheless, according to Borenstein and Rose (2014) the CAB managed to have some intrastate
markets under its control using legal arguments.

10Safety regulation was under the control of the Federal Aviation Administration.
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CAB controlled both the system and each airline’s network. The network was designed

to maintain industry stability and minimize subsidies, leading to a system where each

route was mainly operated by one or two airlines.11 Importantly, Borenstein and Rose

(2014) in pages 68-69 explain that ”the regulatory route award process largely prevented

airlines from reoptimizing their networks to reduce operation costs or improve service as technol-

ogy and travel patterns changed.” As a consequence, any technological improvement such

as increases in aircraft speed, capacity or range would not affect each airline’s flight

network in the short term.

By regulating fares, the CAB explicitly encouraged airlines to adopt new aircraft.

Airlines, when operating an older aircraft, would apply for a fare reduction arguing

that it is needed in order to preserve demand for low quality service. The CAB would

refuse this application, hence airlines would have to adopt new aircraft or risk losing

consumers who would choose another airline which flies newer aircrafts.

C. Travel Time Data

C.1. Data Construction

We construct a dataset of travel times by plane between US MSAs for the years 1951,

1956, 1961, 1966. We get information of direct flights from airline flight schedules and

feed this information into an algorithm to allow for indirect flights. For each MSA pair

with airports served by at least one of the airlines in our dataset we compute the fastest

travel time in each of the four years.

Using images of flight schedules, we digitized the flight network for six major air-

lines: American Airlines (AA), Eastern Air Lines (EA), Trans World Airlines (TWA),

United Airlines (UA), Braniff International Airways (BN) and Northwest Airlines (NW).

11Borenstein and Rose (2014) in page 68, based on ?, expose ”In 1958, for example, twenty-three of the
hundred largest city-pair markets were effectively monopolies; another fifty-seven were effectively duopolies;
and in only two did the three largest carriers have less than a 90 percent share.”
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Note that the first four in this list were often referred to as the Big Four, highlighting

their dominant position in the market. They alone accounted for 74% of domestic

trunk revenue passenger-miles from February 1955 to January 1956. Together the

six airlines accounted for 82% of revenue passenger-miles in that same period, 77%

from February 1960 to January 1961 and 78% from February 1965 to January 1966

(C.A.B., 1966). Our sample of airlines thus covers a vast share of the domestic market

for air transport. In addition, the airlines were chosen to maximize geographic coverage.

In total we obtain a sample of 5,910 flights. These flights often have multiple stops. If

we count each origin-destination pair of these flights separately, our sample contains

17,469 legs.

Table 1 lists the exact dates of when flight schedules we digitized became effective.

Due to limited data availability not all flight schedules are drawn from the same part of

the year. As seasonality of the network seems limited and given the large market share

of the airlines we consider, our data is a good approximation of the network in a given

year.

Table 1: Date of Digitized Flight Schedules

Airline 1951 1956 1961 1966

AA September 30 April 29 April 30 April 24
EA August 1 October 28 April 1 April 24
TWA August 1 September 1 April 30 May 23
UA April 29 July 1 June 1 April 24
BN August August 15 April 30 April 24
NW April 29 April 29 May 28 March 1
PA June 1 July 1 August 1 August 1

Figure 3 shows a fragment of a page of the flight schedule published by American

Airlines in 1961. Each column corresponds to one flight. As can be seen, one flight often

has multiple stops. Departure and arrival times in most flight schedules are indicated
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using the 12-hour system. PM times can be distinguished from AM times by their bold

print. In the process of digitization we converted the flight schedules to the 24-hour

system. Times in most tables are in local time. We thus recorded the time zones that are

indicated next to the city name and converted them to Eastern Standard Time.

Figure 3: Fragment of flight schedule American Airlines 1961
The center column displays the name of departure and arrival cities. The small columns on the sides
display flights with departure and arrival time (local time, bold numbers represent PM). The top of the
small columns shows the type of service provided (first class, coach or both), aircraft operated, days
operated (daily if information is missing) and flight number.

To obtain exact geographical information on where airports are located, we match

city names to their IATA airport codes. We use the addresses of ticket offices that are

indicated on the last pages of the flight schedules. Most of the ticket offices were located

directly at the airport, allowing to infer the airport the airline was serving in a given

year. For some flight schedules we are missing these last pages and used information

from adjacent years in order to identify airports. We also manually verified the airport

match using various online sources. We then obtain geographical coordinates from a

dataset provided by https://ourairports.com/ (downloaded July 2020).
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From the flight schedule we also collect information on the aircraft model, indicated

next to the flight number. Using various online sources, we manually identified aircraft

models that are powered by a jet engine. We thus know on which connections airlines

were using jet aircraft.

Flight Schedules also contain information on connecting flights. For example, the

second column in Figure 3 indicates a departure from Boston leaving at 12.00 local time.

A footnote is added to the departure time indicating that this departure is a connection

via New York. It is thus not operated by flight 287 otherwise described in column 2, but

it is just supplementary information for the passenger. As we are interested in the speed

of aircraft and the actual travel time on a given link, this information on connecting

flights would pollute our data and we thus delete this supplementary information.

As outlined above, the digitization requires human input. It is thus prone error-prone.

The travel time calculation relies on each link in the network, and if one important

connection has a miscoded flight, it might potentially distort the travel time between

many MSA pairs. We thus implement an elaborate method to detect mistakes in the

digitization process. In particular, after the initial transcription, we regress the observed

duration of the flight on a set of explanatory variables: the full interaction of distance,

a set of airline indicators, a set of year indicators and a dummy variable indicating

whether the aircraft is powered by a jet engine or not. This linear model yields an

R2 above 95%. We then compute the predicted duration of each flight and obtain

the relative deviation from the observed duration. If the deviation is above 50%, we

manually check whether the transcribed information is correct. If we find a mistake,

we correct the raw data, rerun the regression and recompute relative deviations, until

all the observations with more than 50% deviation have been manually verified.

For 15 connections, the information was correctly transcribed from the flight sched-

ule, but the flight time differed a lot from other flights with similar distances that used
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the same aircraft. The implied aircraft speed for these cases is either unrealistically

high or low, in one case the implied flight time is even negative. These cases seem to

be typos introduced when the flight schedule was created (e.g. a ”2” becomes a ”3”).

Instead of inferring what the true flight schedule was which is not always obvious, we

drop these cases. Table 2 lists all 15 cases.

Table 2: Dropped Connections

Airline Year Origin Destination Departure Time Arrival Time

0 UA 66 TYS DCA 1940 2036
1 UA 66 LAX BWI 2150 1715
2 UA 66 CHA TYS 1635 1909
3 PA 66 SFO LAX 2105 1850
4 PA 66 SEA PDX 705 935
5 PA 56 PAP SDQ 830 835
6 PA 51 HAV MIA 800 903
7 PA 51 SJU SDQ 825 830
8 NW 66 HND OKA 655 1135
9 EA 66 ORD MSP 2340 2340
10 EA 56 SDF MDW 1352 1418
11 EA 56 GSO RIC 2207 2204
12 AA 56 PHX TUS 1630 1655
13 PA 51 STR FRA 1320 1540
14 EA 66 TPA JFK 1330 1548

As our analysis is at the MSA level, we match airports to 1950 MSA boundaries. Each

airport is matched to all MSAs for which it lies inside the MSA boundary or at most

15km away from the MSA boundary. If we focus only on airports contained within

MSA boundaries, we would, for example, drop Atlanta’s airport. Of 275 US airports,

176 airports are matched to at least one MSA. 18 of these are matched to two MSAs

and Harrisburg International Airport is matched to three MSAs: Harrisburg, Lancaster

and York. Out of 168 MSAs, 142 are matched at least in one year to an airport ,and 108

MSAs are matched to one or more airports in the four years. In table 3 we present the

168 MSAs, the ones that are connected at least once, and the ones that are connected in

the four years.
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Figure 4: Airports matched to MSAs.

Next, we compute the shortest travel time for every airport pair, and then take the

minimum to obtain shortest travel time at the MSA pair level. In particular, we apply

Dijkstra’s algorithm to compute shortest paths (?). We adjust this algorithm to take into

account the exact timing of the flight schedules. We consider a possible departure time

t from origin city o and then compute the shortest path to destination city d at this time

of the day. If getting to d requires switching flights, we account for the required time at

the location of the layover. We repeat this procedure for every possible departure time

t at origin city o and then take the minimum that gives us the fastest travel time from o

to d, τod.

The flight schedule format requires us to make one assumption. In particular, the

flight schedule for a multi-stop flight may either indicate the arrival time or the depar-

ture time for a particular stop. If the flight schedule only lists the departure time, we
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need to infer the arrival time and vice versa. We allow for five minutes between arrival

and departure. This is relatively low, but still in the range of observed difference be-

tween departure and arrival for cases where we observe both. As correspondences may

have been ensured by airlines in reality, i.e. one aircraft waiting with departure until

other aircraft arrive, we opted for the lower end of the observed range of stopping times.

Finally, since the shortest travel time measure may not capture the benefits of a

highly frequented hub, we also calculate the daily average of the shortest travel time.

In particular, we compute the shortest travel time at every full hour of the day and take

the average. This measure thus captures the benefits of being located near an airport

where flights depart many times per day.

To conclude, we end up with a set of four origin-destination matrices indicating the

fastest travel time (and another set with the average daily travel time) between US

MSAs in 1951, 1956, 1961 and 1966.

C.2. Descriptive Statistics

Table 4 shows the number of non-stop connections between MSAs by year and airline.

It underlines the dominant position of the Big Four (AA, EA, TW, UA) which were much

bigger than their competitors (BN and NW). The growth of the airline industry is also

apparent. All airlines had the lowest number of connections in 1951 and subsequently

extended their network. At the same time the average distance of the connections grad-

ually increased over time. Part of this may have been due to jet technology allowing

for longer aircraft range. We thus analyze a period where more and longer flights are

introduced.
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Table 4: Domestic Non-Stop Connections by Airline and Year

Airline Year Number of
connections

Jet Share
(connec-

tions)

Jet Share
(km)

Mean
Distance (in

km)

AA 1951 258 0.00 0.00 515.32
AA 1956 367 0.00 0.00 889.66
AA 1961 325 22.15 50.50 768.24
AA 1966 282 73.40 89.52 1020.36

BN 1951 96 0.00 0.00 317.90
BN 1956 210 0.00 0.00 380.60
BN 1961 176 8.52 18.84 460.41
BN 1966 150 72.00 76.64 553.09

EA 1951 345 0.00 0.00 319.87
EA 1956 479 0.00 0.00 412.60
EA 1961 595 3.70 13.28 441.42
EA 1966 492 54.47 75.46 569.01

NW 1951 77 0.00 0.00 521.70
NW 1956 95 0.00 0.00 724.77
NW 1961 127 11.02 32.43 824.59
NW 1966 136 77.94 90.86 945.81

TW 1951 210 0.00 0.00 503.69
TW 1956 253 0.00 0.00 711.78
TW 1961 240 28.75 54.63 807.72
TW 1966 265 86.42 96.05 1143.30

UA 1951 291 0.00 0.00 492.88
UA 1956 361 0.00 0.00 714.39
UA 1961 323 31.89 65.32 803.49
UA 1966 533 49.91 79.54 781.38

While these changes in the network are remarkable, airlines were constrained by the

regulator in opening new routes. Accordingly, table 5 shows that the network remains

relatively stable over time with more than three quarters of connections remaining

intact within a five-year window. Interestingly, during the beginning of the jet age (i.e.

1956 to 1961), the network appears to have been especially stable, with only 11% of

connections either disappearing or newly being added. Thus, the rise of jet aircraft did

not lead to a vast reshaping of the network. Given the very different technology, this
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may be surprising, but may partly be due to heavy regulation.

The table also shows that newly introduced routes were over long distances whereas

those discontinued were operating on shorter distances. When changes in the network

took place, they thus seemed to improve the network for places further apart.

Table 5: Network Changes (weighted by frequency)

Period Remain connected Newly connected Disconnected

Share of Non-stop Connections (%)
1951 to 1956 78.47 16.79 4.74
1956 to 1961 88.96 6.43 4.6
1961 to 1966 80.64 12.37 6.99

Mean distance (km)
1951 to 1956 411 1075 337
1956 to 1961 524 914 972
1961 to 1966 568 769 450

Table 6: Network Changes

Period Remain connected Newly connected Disconnected

Connected MSAs
1951 to 1956 119 7 8
1956 to 1961 122 0 4
1961 to 1966 114 7 8

Non-stop Connections
1951 to 1956 721 357 124
1956 to 1961 908 231 170
1961 to 1966 912 331 227

Changes in the number of connected MSAs and connections among them. A MSA is connected if in our
data it appears as having at least one incoming and one outgoing flight. A non-stop connection refers to

a pair of origin MSA-destination MSA between which a non-stop flight operates.

Figure 5 shows all non-stop connections pooling all years in our data.
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Figure 5: United States flight network 1951-1966

Figure 6 shows all non-stop connections in our data weighted by the (log) frequency.

Initially, the network was concentrated in the Eastern states and transcontinental routes

were not yet established, due to technological limitations. In contrast, in the 1960s, after

the jet is introduced, intercontinental routes quickly emerge and are operated at a high

frequency. Similarly, direct connections from the Northeast to Florida intensify. The

figure echos the findings from table 6 which illustrates that the overall number of MSA

pairs with a direct connection increases over time.
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Figure 6: Flight Network by Year. Weighted by log weekly frequency.

Airlines differed in their speed of adoption of the newly arrived jet aircraft. Table

4 shows that, in 1961, 65% of UA’s connections between MSAs were flown using a jet

aircraft (weighted by distance), whereas this was only true for 13% of EA’s connections.

While adoption was heterogeneous across airlines, adoption was fast. By 1966, all

airlines were operating 75% of their connections with jet aircraft (weighted by distance).

Figure 7 show the average speed of jet and propeller aircraft by distance. Generally,

jet aircraft were substantially faster, but especially so on long-distance flights, where

they could be up to twice as fast as propeller-driven aircraft. This particularly stark

difference in speed for long-haul flights is also reflected by adoption. Figure 8 shows

that jet aircraft were first introduced on long-haul flights. Only 50% of MSA pairs at

around 1,500 km distance had at least one jet aircraft operating, whereas 100% of pairs

above 3,000 km. Then, in the late 1960s, they were also gradually introduced on shorter

distances. In fact, for all pairs above 2,000 km there was at least one jet engine-powered

flight.
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Figure 7: Speed by Aircraft Type. Pooling all Years.

Figure 8: Jet Adoption
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Figure 9 shows on which routes jets were operating. In the early days of the jet age

it was mainly the transcontinental corridor between New York and California that

benefited. In 1966 propeller aircraft were already being phased out and only operating

in the dense Eastern part of the US where distances between cities are relatively small.

Figure 9: Jet Adoption by Year

The increase in speed due to jet aircraft caused a dramatic reduction in travel times

between US cities. When looking at the full origin-destination matrix, i.e. including

indirect flights, a network-wide reduction in travel time becomes apparent. Figure 11

shows travel times between US MSAs. While the figure shows a gradual decline in

travel time from 1951 to 1966, it also illustrates that conditional on distance and year a

large amount of variation in travel time remains, as only a small fraction of all MSA

pairs were connected via a direct flight (around 8.5% in 1966).
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Figure 10: Non-stop fastest flights United States MSAs

Figure 11: Travel Times between US MSAs.
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Figure 12 that the change in travel time is accompanied by a reduction of the amount

of legs needed to connect two MSAs at every distance. This reduction is specially

marked between 1951 and 1956, and 1961 and 1966. In Figure 13 we open up the

change in travel time by the way an MSA pair was connected in 1951 and 1966: either

directly (non-stop flight) or indirectly (connecting flight). We observe that much of the

increase in travel time for MSA pairs less than 250km apart comes from routes that were

operated non-stop and then it needed a connecting flight. Interestingly, for MSA-pairs

more than 2,000km apart travel time reduced on average 42% for those pairs that were

connected indirectly in both periods, and 51% for those that switched from indirect to

direct. This fact shows the relevance of improvements in flight technology even for

MSAs not directly connected. It could be the case that a reduction in the amount of legs

or an increase in frequency of flights reduces layover time. In Figure 15 we compare the

change in travel time from 1951 to 1966 with a fictitious change in travel time in which

we eliminate layover time in both time periods. We observe that the average change

in travel time is stronger at every distance if we disregard layover time. This implies

that the relative importance of layover time over total travel time increases between

1951 and 1966, preventing total travel time to decrease proportionally to the change of

in-flight travel time.
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Figure 12: Average amount of legs per route
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Figure 13: Change in US travel time 1951 to 1966: connections
12

Figure 14: Change in US travel time 1951 to 1966: connections, discarding layover time
13
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Figure 15: Change in US travel time 1951 to 1966: layover time

In figure 16 we show the average change in travel time in three counterfactual flight

networks. The first counterfactual fixes the flight routes and allows aircraft speed to

evolve.14 The second counterfactual fixes aircraft speed and allows flight routes to

evolve. The third counterfactual allows both flight routes and aircraft speed to evolve.

We obtain that around 90% of the change in travel time is due to the change in speed of

aircrafts, while around 10% of the change is due to the change in the flight routes. In

the figure 17 in the appendix we show that the proportion is relatively constant for all

distances. This confirms that most of the observed changes in the network are due to

improvements in the flight technology.

14Fixes the origin-destination airports that are connected with a non-stop flight.
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Figure 16: Counterfactual change in travel time
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Figure 17: Counterfactual change in travel time 1951-1966

In addition to the changes over time in the network leading to faster travel times,

another feature of the US airline industry becomes salient in the data: airlines’ regional

specialization. As figure 18 shows, while there was competition among the airlines

in our dataset on the major routes (Lower West Coast to the Midwest and Upper East

Coast to the Midwest), some airlines are very specialized and face no competition

from any of the other five airlines on certain routes. In particular, NW controls the

routes connecting Seattle to the Midwest and EA controls much of the connections from

Florida to New York and surroundings.
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Figure 18: Flight Network in 1956 by Airline (weighted by log frequency).

C.3. Instrumental travel time

In order to construct the instrumental travel time we first estimate, separately for each

year, a linear regression of travel time on flight distance using only the fastest non-stop

flight in each origin-destination airport pairs. These yearly regressions provide us

with the fictitious average airplane of each year: the intercept gives the take-off and

landing time of the airplane while the slope provides the (inverse) speed. Results on

this estimation are provided in Table 7.
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Table 7: Regression of travel time on distance fastest non-stop
flights

Travel time (min)
Year 1951 1956 1961 1966

(1) (2) (3) (4)

Constant 25.3∗∗∗ 24.1∗∗∗ 39.5∗∗∗ 29.9∗∗∗

(0.809) (0.656) (0.921) (0.678)
Distance (km) 0.146∗∗∗ 0.132∗∗∗ 0.079∗∗∗ 0.068∗∗∗

(0.001) (0.0007) (0.0010) (0.0006)

Observations 1,137 1,479 1,438 1,490
R2 0.93 0.96 0.82 0.90
Implied speed (km/h) 412 453 758 876

The table presents the results of estimating by OLS: travel timeijt =
α0 + α1 × distanceij + εijt separately for each year t ∈
{1951, 1956, 1961, 1966}. The sample consist of all airport pairs that
are connected with a non-stop flight in the respective year. Travel
time is the fastest non-stop flight between the airports measured
in minutes. The implied speed is calculated as the inverse of the
coefficient on distance multiplied by 60.
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Table 3: Connected MSAs

MSA fips MSA name <=3 periods 4 periods MSA fips MSA name <=3 periods 4 periods

80 Akron, OH SMA X X 4680 Macon, GA SMA X X
160 Albany-Schenectady-Troy, NY SMA X X 4720 Madison, WI SMA X X
200 Albuquerque, NM SMA X X 4760 Manchester, NH SMA
240 Allentown-Bethlehem-Easton, PA-NJ SMA X X 4920 Memphis, TN SMA X X
280 Altoona, PA SMA 5000 Miami, FL SMA X X
320 Amarillo, TX SMA X X 5080 Milwaukee, WI SMA X X
480 Asheville, NC SMA X 5120 Minneapolis-St. Paul, MN SMA X X
520 Atlanta, GA SMA X X 5160 Mobile, AL SMA X X
560 Atlantic City, NJ SMA X 5240 Montgomery, AL SMA X X
600 Augusta, GA-SC SMA X X 5280 Muncie, IN SMA
640 Austin, TX SMA X X 5360 Nashville, TN SMA X X
720 Baltimore, MD SMA X X 5400 New Bedford, MA SMA
760 Baton Rouge, LA SMA X 5440 New Britain-Bristol, CT SMA
800 Bay City, MI SMA X 5480 New Haven, CT SMA X X
840 Beaumont-Port Arthur, TX SMA X 5560 New Orleans, LA SMA X X
960 Binghamton, NY SMA X 5600 New York-Northeastern NJ, NY-NJ SMA X X

1000 Birmingham, AL SMA X X 5720 Norfolk-Portsmouth, VA SMA X
1120 Boston, MA SMA X X 5840 Ogden, UT SMA X
1160 Bridgeport, CT SMA X X 5880 Oklahoma City, OK SMA X X
1200 Brockton, MA SMA 5920 Omaha, NE-IA SMA X X
1280 Buffalo, NY SMA X X 5960 Orlando, FL SMA X X
1320 Canton, OH SMA X X 6120 Peoria, IL SMA X
1360 Cedar Rapids, IA SMA X X 6160 Philadelphia, PA-NJ SMA X X
1440 Charleston, SC SMA X X 6200 Phoenix, AZ SMA X X
1480 Charleston, WV SMA X X 6280 Pittsburgh, PA SMA X X
1520 Charlotte, NC SMA X X 6320 Pittsfield, MA SMA
1560 Chattanooga, TN-GA SMA X X 6400 Portland, ME SMA
1600 Chicago, IL-IN SMA X X 6440 Portland, OR-WA SMA X X
1640 Cincinnati, OH-KY SMA X X 6480 Providence, RI SMA X X
1680 Cleveland, OH SMA X X 6560 Pueblo, CO SMA X
1760 Columbia, SC SMA X X 6600 Racine, WI SMA X X
1800 Columbus, GA-AL SMA X X 6640 Raleigh, NC SMA X X
1840 Columbus, OH SMA X X 6680 Reading, PA SMA X X
1880 Corpus Christi, TX SMA X X 6760 Richmond, VA SMA X X
1920 Dallas, TX SMA X X 6800 Roanoke, VA SMA X X
1960 Davenport-Rock Island-Moline, IA-IL SMA X X 6840 Rochester, NY SMA X X
2000 Dayton, OH SMA X X 6880 Rockford, IL SMA
2040 Decatur, IL SMA 6920 Sacramento, CA SMA X X
2080 Denver, CO SMA X X 6960 Saginaw, MI SMA X
2120 Des Moines, IA SMA X X 7000 St. Joseph, MO SMA X
2160 Detroit, MI SMA X X 7040 St. Louis, MO-IL SMA X X
2240 Duluth-Superior, MN-WI SMA X 7160 Salt Lake City, UT SMA X X
2280 Durham, NC SMA X X 7200 San Angelo, TX SMA
2320 El Paso, TX SMA X X 7240 San Antonio, TX SMA X X
2360 Erie, PA SMA X 7280 San Bernardino, CA SMA
2440 Evansville, IN SMA X X 7320 San Diego, CA SMA X X
2480 Fall River, MA-RI SMA X X 7360 San Francisco-Oakland, CA SMA X X
2640 Flint, MI SMA X 7400 San Jose, CA SMA
2760 Fort Wayne, IN SMA X X 7520 Savannah, GA SMA X
2800 Fort Worth, TX SMA X X 7560 Scranton, PA SMA X X
2840 Fresno, CA SMA X X 7600 Seattle, WA SMA X X
2880 Gadsden, AL SMA 7680 Shreveport, LA SMA X
2920 Galveston, TX SMA X X 7720 Sioux City, IA SMA X
3000 Grand Rapids, MI SMA X 7760 Sioux Falls, SD SMA X
3080 Green Bay, WI SMA 7800 South Bend, IN SMA X X
3120 Greensboro-High Point, NC SMA X X 7840 Spokane, WA SMA X X
3160 Greenville, SC SMA X X 7880 Springfield, IL SMA X
3200 Hamilton-Middletown, OH SMA 7920 Springfield, MO SMA X
3240 Harrisburg, PA SMA X X 7960 Springfield, OH SMA
3280 Hartford, CT SMA X X 8000 Springfield-Holyoke, MA-CT SMA X X
3360 Houston, TX SMA X X 8040 Stamford-Norwalk, CT SMA X
3400 Huntington-Ashland, WV-KY-OH SMA X 8120 Stockton, CA SMA X X
3480 Indianapolis, IN SMA X X 8160 Syracuse, NY SMA X X
3520 Jackson, MI SMA X 8200 Tacoma, WA SMA
3560 Jackson, MS SMA 8280 Tampa-St. Petersburg, FL SMA X X
3600 Jacksonville, FL SMA X X 8320 Terre Haute, IN SMA X X
3680 Johnstown, PA SMA 8400 Toledo, OH-MI SMA X X
3720 Kalamazoo, MI SMA X 8440 Topeka, KS SMA X
3760 Kansas City, MO-KS SMA X X 8480 Trenton, NJ SMA
3800 Kenosha, WI SMA 8560 Tulsa, OK SMA X X
3840 Knoxville, TN SMA X X 8680 Utica-Rome, NY SMA
4000 Lancaster, PA SMA X X 8800 Waco, TX SMA X
4040 Lansing, MI SMA X 8840 Washington, DC-MD-VA SMA X X
4080 Laredo, TX SMA X 8880 Waterbury, CT SMA
4160 Lawrence, MA SMA 8920 Waterloo, IA SMA X
4280 Lexington, KY SMA X X 9000 Wheeling-Steubenville, WV-OH SMA X
4320 Lima, OH SMA 9040 Wichita, KS SMA X X
4360 Lincoln, NE SMA X X 9080 Wichita Falls, TX SMA X X
4400 Little Rock-North Little Rock, AR SMA X X 9120 Wilkes-Barre–Hazleton, PA SMA X X
4440 Lorain-Elyria, OH SMA X X 9160 Wilmington, DE-NJ SMA X X
4480 Los Angeles, CA SMA X X 9220 Winston-Salem, NC X X
4520 Louisville, KY-IN SMA X X 9240 Worcester, MA SMA X
4560 Lowell, MA SMA 9280 York, PA SMA X X
4600 Lubbock, TX SMA X X 9320 Youngstown, OH-PA SMA X X
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D. Patent data

In this appendix we describe facts that we observe in the US patent data, for patents

filed between 1945 and 1975.15

To construct the patent dataset we downloaded from Google Patents all patents

granted by the USPTO with filing year between 1949 and 1968. This dataset contains

patent number, filing year and citations.16,17 Based on the patent number we merge it

with multiple datasets. First, we obtained technology class from the USPTO Master

Classification File (?) and we aggregated them to the six technology categories of ?.

Second, we obtained geographic location of inventors from three datasets: HistPat

(?), HistPat International (?) and Fung Institute (?). We match all inventors’ locations

to 1950 Metropolitan Statistical Areas (MSAs) in contiguous United States. To do the

match we obtain geographical coordinates from the GeoNames US Gazetteer file and

Open Street Maps, and use the MSAs shape file from Manson et al. (2020). Third, we

obtain ownership of patents from two sources: ? for patents owned by firms listed in

the US stock market and Patstat (?) for the remaining unmatched patents.18

We highlight two details from the matching process: 1. During filing years 1971-1972

the rate of non-geocoded patents increases, possibly due to Histpat and Fung data not

being a perfect continuation one of the other. 2. ? seems to use a matching method

based on the patent owner declared in the patent text, as Patstat does. Specially, ? does

not explicitly say if it takes into account firm-ownership structure to determine patent

15Filing year, also called application year, is the closest date to the date of invention that is present in the
data and it represent the date of the first administrative event in order to obtain a patent. In the other
hand, publishing or also called granting year, is the later year in which the patent is granted. The
difference between filing and granting year depends on diverse non-innovation related factors (as
capacity of the patent office to revise applications) and changes over time. Hence filing year is the
date in our data that approximates the best to the date of invention.

16Very few patents had missing information on filing year. We complemented both missing filing year
and citations with the OCR USPTO dataset.

17The patent citation record starts in 1947, year in which the USPTO made it compulsory to have front
page citations of prior art. Gross (2019)

18Patent ownership in both datasets comes from the patent text, which is self declared by the patent
applicant. Particularly, ? does not explicitly state if it takes into account firm-ownership structure to
determine the ultimate owner of a patent, neither does Patstat.
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ownership, neither does Patstat.

For the analysis presented in this appendix we will use the resulting dataset from

the matching procedure, where unless evident or noticed, we will use only patents

that have inventors within MSAs. We discard patents that have inventors in multiple

MSAs and patents that belong to government organizations or universities. We assign

patents to technology categories using fractional count: if a patent is listed in two

technology categories, then we assign half a patent to each category. We discard self

citations (citations in which the citing patent owner is the same as the cited patent

owner) because self-citations may be due to different incentives.

D.1. Matching patents to locations

In figure 19 we observe that the matching rate decreases from around 95% before

1970, to around 80% in 1971 and 1972, and then it stabilizes around 99% after 1975.

Hence, geogprahical results during years 1970-1975 will contain an increased amount

of measurement error.
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Figure 19: Non-matching rate HistPat, HistPat International and Fung

Figure 20 shows the share of patents that have inventors inside MSAs, and figure 21

displays the same by technology category.19

19Technologies are aggregated to six big groups, as explained in HJT 2002
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Figure 20: Share patents in Metropolitan Statistical Areas

Figure 21: Share patents in Metropolitan Statistical Areas
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D.2. Input-Output of patents

In the same spirit as how Input-Output tables of industries are constructed, we can

use citations as a reflection of sourced (input) knowledge. In this case, we interpret

the cited patent as being a source of knowledge, and the citing patent as being a desti-

nation. In Figure 22 we aggregate citations by citing-cited technology category in the

years 1949-1953. Rows represent the source technology and columns the destination

technology. Columns should sum to 1 (round errors may exist). We highlight in bold

those IO coefficients that are higher than 0.1. We observe that the diagonal has coef-

ficients greater than 0.5, implying that technologies rely on themselves to create new

knowledge. At the same time, we observe the importance of Electrical to create Com-

munication technologies, and the small relevance of Drugs for every other technology.

Figure 22: Input-Output of technologies 1949-1953

D.3. Descriptive statistics

Table 8 shows descriptive statistics along each step of the patent data matching and

sample selection. The final dataset contains 515,089 patents and 1,639,326 citations.
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Table 8: Patent data sample selection

Sample N patents N citations
1st quartile
cit dist (km)

2nd quartile
cit dist (km)

3rd quartile
cit dist (km)

Google patents 964,582 4,392,725
With location 923,150 4,191,886
US 749,410 3,569,578
MSA 589,870 2,354,844
Single location 571,969 2,237,095 213 730 1,682
With owner id 571,824 1,963,644 199 696 1,673
Non gov/univ 565,372 1,932,297 199 696 1,664
With travel time (final sample) 515,089 1,639,326 184 689 1,645

Figure 23: Patents per capita in 1951
Quantiles of patents per capita are computed in each technology and then averaged across technologies.

Population is from 1950 Census.

Fact 1: Initially less innovative locations had a higher patenting growth rate

Figure 24 shows the MSA’s ranking of innovativeness in 1951 and its subsequent patent-

ing growth rate in 1951-1966. MSAs that were initially more innovative (lower values

in the ranking) are those that saw lower values of subsequent patenting growth.20 We
20Each dot in Figure 24 is an MSA. To compute the MSA ranking we need to double-rank MSAs. First

we rank all MSAs in each technology. Second we take the across-technology average ranking of
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estimate a linear regression with an intercept and a slope, and find that the slope is pos-

itive and statistically different from zero. At the mean, lowering initial innovativeness

by 10 positions in the ranking was associated with a subsequent 0.42 percentage points

higher yearly growth rate of patenting. Figure 25 shows that MSAs that were initially

less innovative and had high subsequent growth were located in all four regions.

Figure 24: Patent growth rate by initial innovativeness ranking of MSA

each MSA. Third we rank all MSA’s averages. To compute the MSA’s yearly growth rate we first
take the 1951-1966 growth rate for each technology in the MSA. We then take the average across
technology. Finally we obtain the MSA’s yearly growth rate by computing: yearly growth rate =

(1+ 19 year growth rate)(1/19) − 1 (the 1951 to 1966 period is a 20 year window, we take growth rates
as being from the first year 1949 to the last one 1968, which is 19 year growth).
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Figure 25: Patent growth by initial innovativeness ranking of MSA

Fact 2: The South and the West of the US had a higher patenting growth rate

Figures 26 and 27 present averages across technologies within a region-year. Figure

26 shows that the share of patents filed by inventors located in the Midwest and the

Northeast decreased from 75% in 1951 to 68% in 1966, while the share of patents filed

in the South and the West increased from 25% to 32%. The change in the shares implies

a higher growth rate of patenting in the South and the West relative to the Midwest

and the Northeast.
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Figure 26: Share of patents by region Figure 27: Patent growth by region

D.3.1. Descriptive statistics by technology

Figure 28: Share of patents by region
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Figure 30: Geography of patenting 1951



Figure 31: Patents per capita in 1951



Figure 32: Patent growth rate 1951-1966



Figure 29: Patent growth rate by region
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Figure 33: Quantiles of citation distance
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Figure 34: Share of citations by distance
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E. Appendix: US Census Regions

Figure 35: US Census Regions
Source: US Census Bureau

F. Bias Correction and IV estimation

F.1. Split-panel jackknife bias correction

Weidner and Zylkin (2021) show that PPML estimation of gravity equations with three-

way fixed effects (origin-time, destination-time, origin-destination) is consistent but

asymptotically biased. In their words: ”the asymptotic distribution of the estimates is not

centered at the truth as N → ∞” (page 2). The asymptotic bias concerns both point

estimates and standard errors. In order to correct the bias we apply their suggested

split-panel jackknife bias correction of section 3.4.1 to both point estimates and boot-

strap standard errors. The idea of the jackknife bias correction is to estimate the model

in many subsamples and then subtract the average coefficients of the subsamples from

(twice) the original coefficient.

As suggested in Weidner and Zylkin (2021) when using real world data (as opposite
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to simulated data), we estimate the bias correction repeatedly. We modify equation (14)

in Weidner and Zylkin (2021) to define the bias corrected coefficient as:

β̃J
N := 2 × β̂ − 1

Z ∑
z

∑
p

β̂(p,z)

4
(3)

where p is a random subsample of size 1/4th of the original sample, and Z is the

amount of times to subsample.

The procedure to estimate bias corrected point estimate β̃J
N is as follows:

1. Estimate β̂: the not-bias-corrected estimate of equation (1)

2. Randomly allocate all citing establishment-technology Fih into two equally sized

groups (groups are time-invariant). Call them citing groups a and b.

3. Randomly allocate all cited establishment-technology Gjk into two equally sized

groups (groups are time-invariant). Call them cited groups a and b.

4. Create four p subsamples of the original data: (a,a), (a,b), (b,a), (b,b). Subsamples

keep the same granularity as the original data FiGjhkt.

5. Estimate equation (1) (gravity equation of the main text) in each of the subsamples

from the previous step to obtain β̂(p,z).21 Store the four estimated coefficients.

6. Repeat Z times steps 2 to 5.

7. Compute equation 3

To compute bias-corrected bootstrap standard errors we need to bias-correct the

point estimate β̃J
m of each bootstrap iteration m. The procedure to estimate bias corrected

standard errors is as follows:

21Given that we require to identify the fixed effects, the effective subsample in all four p estimations does
not have the same amount of observations. However, in our estimations the effective subsample size
across p subsamples does not differ by more than 5%.
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1. Sample establishment-technology-pairs FiGjhk with replacement such that we

obtain a re-sampled data of the same size as the original data (hence, some FiGjhk

will be repeated in the re-sampled data). Sampled FiGjhk are kept for all time

periods in order to keep the source of identification of β: across time variation

within a establishment pair. Label this new dataset datam.

2. Using datam, estimate equation (1) to obtain β̂m (this is a point estimate of the

specific datam)

3. Using datam, repeat ZM times steps 2 to 5 of the procedure to estimate bias corrected

point estimate. This step provides ZM × 4 point estimates β̂(p,m,zM)

4. Compute the bias corrected point estimate of bootstrap m β̃J
m = 2 × β̂m −

1
ZM

∑zM ∑p
β̂(p,m,zM)

4 .

5. Store the bias corrected point estimate of bootstrap m

6. Repeat steps 1 to 5 M times to obtain M bias corrected bootstrap point estimates

β̃J
m

7. Compute the variance-covariance matrix of bias corrected bootstrap coefficients

β̃J
m and use it to compute standard errors of β̃J

N

The bias correction of point estimates and bias correction of bootstrap standard

errors implies estimating Z × 4 + ZM × M × 4 models. This is a computationally

demanding task. To estimate columns (1) and (2) of Table 1 we set Z = 100, ZM = 5

and M = 200, adding up to 1, 100 models to estimate for each column.

As recommended in ?, in the Table 9 we repeat Table 1 but reporting 0.025 and 0.975

quantile values of bootstrap estimates (bias corrected for columns (1) and (2)) instead

of standard errors:
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PPML IV PPML

Dep. variable: citations
(1) (2) (3) (4)

log(travel time) −0.084∗∗∗ −0.161∗∗∗
(−0.116;−0.056) (−0.232;−0.108)

log(travel time) × 0-300km −0.015 −0.185
(−0.073; 0.031) (−0.489; 0.097)

log(travel time) × 300-1,000km −0.085∗∗∗ −0.155∗∗∗
(−0.137;−0.050) (−0.255;−0.083)

log(travel time) × 1,000-2,000km −0.096∗∗∗ −0.132∗∗
(−0.148;−0.024) (−0.204;−0.033)

log(travel time) × +2,000km −0.166∗∗∗ −0.206∗∗∗
(−0.246;−0.115) (−0.299;−0.143)

N obs. effective 5, 147, 161 5, 147, 161 5, 147, 161 5, 147, 161
R2 0.88 0.88 0.88 0.88

Table 9: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to
1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute
zero citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance
bin between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two
step instrumental variables estimation, where log(travel timeijt) is instrumented with log(travel timefix routes

ijt ), the
travel time that would have taken place if routes were fixed to the ones observed in 1951 and in each year routes
were operated with the average airplane of the year. 0.025 and 0.975 quantile bootstrap estimates are presented
in parentheses. The coefficients and bootstrap estimates in columns (1) and (2) are jackknife bias-corrected. R2 is
computed as the squared correlation between observed and fitted values.
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F.2. Instrumental variables PPML

To implement the instrumental variables of Poisson estimation we follow the control

function approach described in Wooldridge (2014). We explain the procedure using the

estimation of the elasticity of citations to travel time. The procedure is similar for the

elasticity of (new) patents to knowledge access. We proceed in two steps estimating the

following two equations:

log(travel time)FiGjhkt = λ2 log(instrumental travel timeFiGjhkt)

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(4)

citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(5)

In a first step we estimate equation (4) and obtain estimated residuals ûFiGjhkt. In a

second step we use the estimated residuals as a regressor in equation (5) which controls

for the endogenous component of travel time.

To perform inference we bootstrap standard errors in the following way:

1. Sample establishment-technology-pairs FiGjhk with replacement such that we

obtain a re-sampled data of the same size as the original data (hence, some FiGjhk

will be repeated in the re-sampled data). Sampled FiGjhk are kept for all time

periods in order to keep the source of identification of β: across time variation

within a establishment pair. Label this new dataset datam

2. Using datam, estimate equations (4) and (5) to obtain the bootstrap estimate β̂m.

Store β̂m.

3. Repeat M times steps 1 and 2.

4. Compute the variance-covariance matrix of β̂m and use it to compute standard

errors of β̂

For columns (3) and (4) of Table 1, and columns (3) to (6) of Table 3 we set M = 200.
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G. Additional results

G.1. Diffusion of knowledge

G.1.1. Heterogeneous effects

First, we investigate if the elasticity varies by the degree of concentration of patents

across establishments in the citing technology or cited technology, we find no statisti-

cally significant heterogeneous effect. Results are shown in columns (1) and (2) of Table

11.

Second, we check if the elasticity varies by the median forward and backward citation

lags of the cited and citing technologies. We find that the elasticity of citations to travel

time is more negative both for technologies that accumulate citations during a longer

time period and for technologies that cite older patents. To be able to precisely show if

it is newer or older technologies that diffuse better as consequence of the jet requires an

analysis with the citation level forward and backward lag, and not using the median

lag in the technology. Nonetheless, the results seem to suggest that jets improved the

diffusion of older technologies. Results are shown in columns (3) and (4) of Table 11.

Third, we extend the sample of patents to include patents with a patent owner iden-

tified as a government organization or university. Column (5) of Table 11 opens the

elasticity of citations to travel time by whether the citing patent belongs to a government

organization of university. Column (6) includes a dummy for whether the cited patent

belongs to a government organization or university. We do not observe a particular

change in the pattern of the elasticity of citations to travel time.

Fourth, we extend the sample to include self citations (citations in which the citing

and cited patents belong to the same patent owner F). Column (7) of Table 11 shows

that the elasticity is not statistically different for self citations.
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Fifth, we check if the elasticity varies with the level of innovativeness of the citing

firm. It may be the case that those firms that actually have the -time and monetary-

budget to take a plane are only the most innovative ones. We rank firms F in technology

h according to the amount of patents filed by F in technology h at the initial time

period 1949-1953. We define quantile 0.00 as all those firms that did not file patents in

1949-1953, while quantile 0.01 is assigned to those that filed patents but not as many

as to be in the quantile 0.25 or higher. Results are shown in Table 10. We do not find a

particular pattern related to the initial innovativeness.

Sixth, we check if the elasticity varies with the citing technology, cited technology and

citing-cited technology pair. Results are shown in Table 12 and Table 13. We find that

the elasticity is negative and significant mainly when the citing and cited technology

are the same. In Appendix D we show that most citations happen within a technology,

so most identification power would be when citing and cited technologies are the same.
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Concentration
citing

Concentration
cited

Cited lag
forward

Citing lag
backward

Citing
govt & uni

Cited
govt & univ

Self
citation

Dep. variable: citations
(1) (2) (3) (4) (5) (6) (7)

log(travel time):0-300km 0.037 0.077 −0.035 0.068 −0.014 0.015 −0.031
(0.121) (0.125) (0.447) (0.523) (0.041) (0.041) (0.042)

log(travel time):300-1000km −0.148∗ −0.073 −0.346 −0.014 −0.096∗∗∗ −0.095∗∗∗ −0.079∗∗∗
(0.077) (0.090) (0.333) (0.344) (0.041) (0.025) (0.027)

log(travel time):1000-2000km −0.146 −0.129 0.039 0.068 −0.093∗∗ −0.093∗∗ −0.092∗∗
(0.102) (0.110) (0.458) (0.488) (0.041) (0.041) (0.040)

log(travel time):+2000km −0.300∗∗∗ −0.278∗∗∗ 0.796∗∗ 0.673 −0.176∗∗∗ −0.178∗∗∗ −0.144∗∗∗
(0.100) (0.086) (0.334) (0.471) (0.048) (0.047) (0.040)

log(travel time):0-300km × X −0.759 −1.346 0.009 −0.032 0.095 0.565 0.137
(1.749) (1.705) (0.179) (0.206) (0.342) (0.469) (0.191)

log(travel time):300-1000km × X 0.786 −0.320 0.100 −0.032 −0.105 −0.636∗ 0.129
(1.081) (1.278) (0.132) (0.136) (0.244) (0.301) (0.122)

log(travel time):1000-2000km × X 0.757 0.512 −0.053 −0.065 −0.275 −0.304 0.106
(1.379) (1.511) (0.181) (0.192) (0.365) (0.370) (0.199)

log(travel time):+2000km × X 1.732 1.421 −0.393∗∗∗ −0.341∗ −0.235 0.093 −0.054
(1.427) (1.124) (0.132) (0.186) (0.406) (0.293) (0.166)

N obs. effective 5,147,161 5,147,161 5,147,161 5,147,161 5,250,386 5,250,386 5,287,792
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.94
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 11: Elasticity of citations to travel time: Heterogeneity (part 1)
Result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + ∑d αd 1{distanceij ∈
d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and
time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time
period t, and it is set to 1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. The variable X takes different
value depending on the column: in column (1) it is the across-MSA Herfindahl index of the citing technology, in column (2) it is the across-MSA Herfindahl index of
the cited technology, in column (3) it is median forward citation lag of the cited technology, in column (4) it is median backward citation lag of the citing technology.
In column (5) and (6) the sample includes government and university patents, in column (5) X is a dummy that takes value one if the citing patent belongs to a
university or government organisation, in column (6) it is a dummy that takes value one if the cited patent belongs to a university or government organisation. In
column (7) the sample includes self citations, the variable X is a dummy that takes value one if the citing firm F cited firm G are the same. When FiGjhk has positive
citations in at least one period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.



Citing quantile Cited quantile

Dep. variable: citations
(1) (2)

log(travel time) × quantile 0.00 -0.152∗∗∗ -0.119∗∗∗
(0.055) (0.036)

log(travel time) × quantile 0.01 -0.091 -0.058
(0.111) (0.090)

log(travel time) × quantile 0.25 -0.078 -0.166∗
(0.098) (0.088)

log(travel time) × quantile 0.50 -0.140 -0.076
(0.086) (0.078)

log(travel time) × quantile 0.75 -0.187∗∗ -0.040
(0.076) (0.063)

log(travel time) × quantile 0.90 -0.008 -0.097∗
(0.061) (0.054)

log(travel time) × quantile 0.95 -0.022 -0.127∗∗∗
(0.036) (0.038)

log(travel time) × quantile 0.99 -0.129∗∗∗ -0.062∗
(0.033) (0.036)

log(travel time) × quantile 0.999 -0.078∗ -0.073∗
(0.042) (0.043)

N obs. effective 5,147,161 5,147,161
R2 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 10: Elasticity of citations to travel time: Heterogeneity (part 2)
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑q βq log(travel timeijt)1{quantileFh ∈ q} + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G in
location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and
it is set to 1 when i = j. quantileFh is the quantile of firm F in the distribution of firms within technology h, using
patents applied by F in h in the time period 1949-1953. Column (2) repeats the analysis using the quantile of the
cited firm G in technology k. When FiGjhk has positive citations in at least one period and no citations in another,
we attribute zero citations in the missing period. When FiGjhk has positive citations in at least one period and no
citations in another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional
location in parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation
between observed and fitted values.
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PPML
Citing technology Cited technology

Dep. variable: citations
(1) (2)

log(travel time) × Chemical −0.070∗ −0.094∗∗
(0.041) (0.041)

log(travel time) × Computers & Communications −0.075 −0.121∗
(0.076) (0.074)

log(travel time) × Drugs & Medical −0.015 0.027
(0.156) (0.173)

log(travel time) × Electrical & Electronic −0.071 −0.053
(0.046) (0.043)

log(travel time) × Mechanical −0.094∗∗∗ −0.096∗∗∗
(0.030) (0.030)

log(travel time) × Others −0.128∗∗∗ −0.107∗∗
(0.043) (0.042)

N obs. effective 5,147,161 5,147,161
R2 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 12: Elasticity of citations to travel time by citing and cited technology
Part 1

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑tech βh 1{tech = h} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G
located in j, in technology k. 1{tech = h} is a dummy variable that takes value 1 when the citing technology h is equal
to technology tech. In column (2) the dummy is modified to 1{tech = k} such that it takes value 1 when the cited
technology k is equal to technology tech. travel timeijt is the travel time in minutes between location i and j at time
period t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least one period and no citations in
another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared
correlation between observed and fitted values.
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Cited
Citing Chemical Computers &

Communications
Drugs &
Medical

Electrical &
Electronic Mechanical Others

Chemical −0.095∗∗ 0.240 0.147 −0.306∗∗∗ −0.040 −0.045
(0.047) (0.252) (0.194) (0.090) (0.065) (0.064)

Computers & Communications −0.115 −0.267∗∗∗ −0.426 0.101 0.089 0.067
(0.247) (0.093) (0.966) (0.087) (0.139) (0.161)

Drugs & Medical 0.221 0.330 −0.197 −0.505 −0.264 0.359
(0.231) (1.140) (0.262) (0.489) (0.345) (0.302)

Electrical & Electronic 0.176∗∗ 0.171∗ −0.146 −0.102∗∗ 0.094 −0.023
(0.089) (0.092) (0.615) (0.052) (0.075) (0.076)

Mechanical −0.058 0.151 −0.152 0.106 −0.129∗∗∗ −0.032
(0.076) (0.145) (0.402) (0.082) (0.035) (0.056)

Others 0.042 0.173 0.204 0.052 0.019 −0.209∗∗∗
(0.074) (0.169) (0.274) (0.072) (0.053) (0.054)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 13: Elasticity of citations to travel time by citing and cited technology
Part 2

Column (1) shows the result of one single Poisson Pseudo Maximum Likelihood (PPML) estimation of
citationsFiGjhkt = exp [∑tech pair βhk 1{tech pair = hk} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt,
for citations of patents filed by establishment of firm F in location i, technology h and time period t, to patents filed by
establishment of firm G located in j, in technology k. 1{tech pair = hk} is a dummy variable that takes value 1 when
the citing technology h is equal to technology tech. In column (2) the dummy is modified to 1{tech = k} such that
it takes value 1 when the cited technology k is equal to technology tech. travel timeijt is the travel time in minutes
between location i and j at time period t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least
one period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at
the non-directional location pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is
computed as the squared correlation between observed and fitted values. The amount of observation in the effective
sample is 5,147,161.

G.1.2. IV PPML: first and second stage estimation
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First stage
OLS

Second stage
PPML

Dep. variable: log(travel time) citations
(1) (2)

log(travel time IV) 0.912∗∗∗
(0.042)

log(travel time) -0.161∗∗∗
(0.031)

residual 1st stage 0.101
(0.316)

N obs. effective 10, 907, 616 5, 147, 161
R2 0.99 0.88
Within R2 0.34
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 14: Elasticity of citations to travel time: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, where log(travel timeijt) is instru-
mented with log(instrumental travel timeijt) . Column (1) shows the results of the first stage regression
estimated by OLS. Column (2) shows the result of the second stage regression estimated by Poisson
Pseudo Maximum Likelihood , including the estimated residuals of the first stage as controls. The
number of observations in the second stage estimation is smaller due to not being able to identify fixed
effects that are required in PPML estimation.
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OLS First stage
0-300km

OLS First stage
300-1,000km

OLS First stage
1,000-2,000km

OLS First stage
+2,000km

Second stage
PPML

Dep. variable: log(travel time) citations
(1) (2) (3) (4) (5)

log(travel time IV) × 0-300km 0.330∗∗∗ 0.049 0.013 0.037∗
(0.120) (0.057) (0.022) (0.019)

log(travel time IV) × 300-1,000km -0.162∗∗∗ 1.08∗∗∗ -0.014 0.011
(0.041) (0.040) (0.009) (0.010)

log(travel time IV) × 1,000-2,000km -0.079∗∗∗ -0.066∗∗∗ 1.06∗∗∗ 0.014
(0.025) (0.022) (0.043) (0.009)

log(travel time IV) × +2,000km -0.074∗∗∗ -0.059∗∗∗ -0.022∗∗ 1.10∗∗∗
(0.024) (0.019) (0.010) (0.017)

log(travel time) × 0-300km -0.185
(0.153)

log(travel time) × 300-1,000km −0.155∗∗∗
(0.044)

log(travel time) × 1,000-2,000km −0.132∗∗
(0.044)

log(travel time) × +2,000km −0.206∗∗∗
(0.042)

residual × 0-300km 0.172
(0.153)

residual 300-1,000km 0.071
(0.052)

residual 1,000-2,000km 0.071
(0.066)

residual +2,000km 0.060
(0.081)

N obs. effective 10,907,616 10,907,616 10,907,616 10,907,616 5,147,161
R2 0.99 0.99 0.99 0.99 0.88
Within R2 0.06 0.45 0.80 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 15: Elasticity of citations to travel time: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of Poisson Pseudo Maxi-
mum Likelihood of citationsFiGjhkt = exp [∑d βd × 1{distanceij ∈ d} × log(travel timeijt) + FEFiGjhk +
FEFiht + FEGjkt] × εFiGjhkt, where 1{distanceij ∈ d} × log(travel timeijt) is instrumented with
1{distanceij ∈ d} × log(instrumental travel timeijt) . Given that there are 4 distance segments d there
are 4 first stages. Columns (1) to (4) show the results of the first stage regressions which are estimated
by OLS. Coefficients of the 4 interactions of the instrument can be identified due to the presence of
the fixed effects, e.g. after demeaning by fixed effects there is residual variation that allows to identify
the 4 coefficients in each regression of the first stage. Column (5) shows the result of the second stage
regression estimated by PPML, including the estimated residuals of the first stage as controls. The
number of observations in the second stage estimation is smaller due to not being able to identify fixed
effects that are required in PPML estimation.
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G.1.3. Robustness

Sample of establishments

We may be concerned that the changes in the diffusion of knowledge are purely con-

sequence of a potential change in the geographical location of innovation activity. To

rule out this possibility, in Table 16 we estimate the baseline regression 1 with different

samples. In column (1) we include the baseline results.22 In column (2) we use only

citing establishments Fi that filed patents during the initial time period 1949-1953. In

column (3) we further restrict the sample to both citing establishments Fi and cited

establishments Gj that filed patents in 1949-1953.23 We find that the coefficient at more

than 2,000km remains comparable to the one in the baseline regression, statistically

significant at the 1%.

22Coefficients are not bias corrected.
23We require Fi and Gj to have positive amount of patents applied during 1949-1953. However, those

establishments need not to have cited each other.
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All Citing
establishment

Citing & Cited
establishment

Dep. variable: citations citFiGjhkt
(1) (2) (3)

log(travel time) × 0-300km −0.014 −0.017 −0.008
(0.041) (0.045) (0.045)

log(travel time) × 300-1,000km −0.095∗∗∗ −0.090∗∗∗ −0.087∗∗∗
(0.025) (0.027) (0.028)

log(travel time) × 1,000-2,000km −0.092∗∗ −0.093∗∗ −0.061
(0.041) (0.046) (0.049)

log(travel time) × +2,000km −0.177∗∗∗ −0.146∗∗∗ −0.163∗∗∗
(0.048) (0.051) (0.051)

N obs. effective 5, 147, 161 3, 446, 185 2, 190, 973
R2 0.88 0.88 0.89
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 16: Elasticity of citations to travel time: Fix sample of establishments
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑d βd × 1{distanceij ∈ d} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents
filed by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G
in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and
it is set to 1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max].
Column (2) truncates the sample keeping only citing establishments Fi that where present in the initial time period
1949 − 1953. Column (3) truncates the sample keeping only citing establishments Fi and cited establishments Gj that
where present in the initial time period. Results in none of the columns is bias-corrected. When FiGjhk has positive
citations in at least one period and no citations in another, we attribute zero citations in the missing period. Standard
errors clustered at the non-directional location pair are presented in parenthesis (ij is the same non-directional location
pair as ji). R2 is computed as the squared correlation between observed and fitted values.
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Indirectly connected MSAs

If the 1951 flight network was constructed in order to connect city pairs that would see

future growth in citations, we can alleviate this endogeneity concern by focusing only

on indirectly connected pairs.

Table 17 presents PPML regressions not bias-corrected. Columns (1) and (2) are

the baseline regressions (all MSA-pairs), columns (3) and (4) drop MSA-pairs that

are ever connected with one leg (a non-stop flight), and columns (5) and (6) drop

MSA-pairs that are ever connected with one flight number. The difference between

non-stop and one flight number is that one flight number could serve multiple MSAs

by making intermediate stops.24 The estimated coefficients are in the ballpark of the

initial estimates, especially for +2,000km, providing evidence that it is reasonable to

use the pre-existing network as the baseline to construct the instrument.

24For example, in 1951 NYC-LA was connected with one flight number that included one stop in Chicago,
that is two legs but only one flight number (passengers did not have to change airplanes.)
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PPML
not bias-corrected

Dep. variable: citations
(1) (2) (3) (4) (5) (6)

log(travel time) −0.088∗∗∗ −0.174∗∗∗ −0.231∗∗∗
(0.023) (0.049) (0.058)

log(travel time) × 0-300km −0.014 −0.253∗∗ −0.429∗∗∗
(0.041) (0.113) (0.160)

log(travel time) × 300-1,000km −0.095∗∗∗ −0.102 −0.203∗∗
(0.025) (0.073) (0.084)

log(travel time) × 1000-2,000km −0.092∗∗ −0.161∗ −0.223∗∗
(0.041) (0.087) (0.103)

log(travel time) × +2,000km −0.177∗∗∗ −0.263∗∗∗ −0.210∗∗∗
(0.048) (0.084) (0.091)

N obs. effective 5, 147, 161 5, 147, 161 1, 735, 427 1, 735, 427 1, 396, 393 1, 396, 393
R2 0.88 0.88 0.94 0.94 0.94 0.94

Observation selection:
All X X
Discard one leg X X
Discard one flight number X X
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 17: Elasticity of citations to travel time: dropping directly connected MSA pairs
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) discards all ij that are ever
connected with one leg (non-stop flight), while columns (5) and (6) discard all ij that are ever connected with one
flight number. The difference between non-stop and one flight number is that one flight number could serve multiple
MSAs by making intermediate stops. Standard errors clustered at the non-directional location are presented between
parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between
observed and fitted values.

Estimation of log-log gravity equation

We modify equation 1 to have a log-log version:

log(citationsFiGjhkt) = κ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + νFiGjhkt (6)

Results by OLS estimation are presented in Table 18.
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PPML OLS

Dep. variable: citations log(citations)
(1) (2) (3) (4)

log(travel time) −0.088∗∗∗ -0.056
(0.023) (0.037)

log(travel time) × 0-300 km 0.014 0.046
(0.041) (0.061)

log(travel time) × 300-1,000 km −0.095∗∗∗ −0.072∗
(0.025) (0.042)

log(travel time) × 1,000-2,000 km −0.092∗∗ -0.104
(0.041) (0.070)

log(travel time) × +2,000 km −0.177∗∗∗ -0.161∗
(0.048) (0.085)

N obs. effective 5, 147, 161 5, 147, 161 2,855,586 2,855,586
R2 0.88 0.88 0.99 0.99
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 18: Elasticity of citations to travel time: PPML and OLS
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) shows the result of OLS
estimation of log(citationsFiGjhkt) = κ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + νFiGjhkt. The coefficients and
standard errors in columns (1) and (2) are jackknife bias-corrected. In columns (3) and (4) standard errors are clustered
at the MSA-pair. R2 is computed as the squared correlation between observed and fitted values.
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Ticket prices

During the period of analysis ticket prices were set by the Civil Aeronautics Board, so

airlines could not set prices of their own tickets. Some airlines included a sample of

prices in the last page of their booklet of flight schedules a sample of prices, which we

digitized. We have digitized American Airlines 1951, 1961, 1966; TWA 1951 and United

Airlines 1956 and 1961.25. The sample includes prices for 11,590 directional airport pair

years. We document multiple facts about prices.

First, prices were set in the form of an intercept plus a variable increment depending

on distance between origin and destination (until 1962-1963). A linear regression with

an intercept and a slope estimated separately for each year (including 1966), service

class (first class or coach service), and aircraft type (propeller or jet) gives a R2 of 0.98

or higher in each regression, with an average R2 of 0.993.

Second, all airlines operating within the same route charged exactly the same price.

In 1951, in our digitized price data we have 432 airport pairs in which both American

Airlines and TWA were operating and reported the price for first class service. 94% of

those airport pairs had exactly the same price in both airlines.

Third, ticket prices of flights operated by jet airplanes had a surcharge of around 6%

on top of the one operated by propeller airplanes.

Fourth, the change in prices over time had a similar pattern until 1961: a stronger

increase in short distances (probably due to an increase in fixed costs of take-off and

landing, although not reflected in the intercept of the linear regressions), and a relatively

constant increase for flights between airports more than 1,000 km apart. In the period

1961 to 1966 we observe a drop in prices of around 20% for routes of more than 1,000km

distance, breaking the linearity of prices in distance previously observed. We had vi-

25The sample of prices digitized was limited due to data availability.
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sually inspected price tables and detected that the drop in prices happened in 1962-1963.

Figure 36 shows prices for first class service by year and aircraft type, deflated by

the consumer price index to 1951 values. Figure 37 presents the percentage change in

deflated prices of first class service. Both figures show the previous facts: prices are

generally linear in distance until 1966 in which we observe a break after 1,000 km.

Figure 36: Flight ticket prices, deflated by CPI Figure 37: Change flight ticket prices, deflated by
CPI

We convert our sample of prices at the airport-pair level to prices of the population of

MSA-pairs as follows: first, we obtain a pricing function that can flexibly approximate

prices by regressing deflated prices on a cubic polynomial of distance separately for

each year. We use prices of first class service for all years, propeller aircraft for 1951 and

1956 and jet aircraft for 1961 and 1966. Second, we predict prices for each MSA-pair

and year using the MSA-pair distance and the year’s estimated regression.

Highway travel time

Taylor Jaworski and Carl Kitchens have graciously shared with us data on county-to-

county highway travel time and nominal travel costs for 1950, 1960 and 1970. Travel
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time is constructed using maximum speed limit in each highway segment and year.

Travel costs uses, for each year, travel time, highway distance, truck driver’s wage and

petrol costs. See Jaworski and Kitchens (2019) for details. The dataset is constructed

using 2010 county boundaries and contains county centroids. We converted it to MSA-

to-MSA by matching counties’ centroids to 1950 MSAs using the shape file from Manson

et al. (2020). We take the minimum travel time and minimum travel costs among all

county pairs that belong to the same MSA pair. We convert nominal travel costs to

1950 real travel costs deflating by the consumer price index. We convert 1950, 1960 and

1970 travel times and travel costs to 1951, 1956, 1961 and 1966 by linearly interpolat-

ing (e.g. travel timeij,1951 = travel timeij,1950 × 1960−1951
10 + travel timeij,1960 × 1951−1950

10 ).

The within MSA-pair correlation of the 1951-1966 change in travel time by highway

and airplane is 0.068 for all MSA-pairs, and -0.011 for MSA-pairs more than 2,000 km

apart. Figure 38 presents the MSA-pair 1951-1966 change in travel time by highway and

airplane, where for exposition we only present MSA-pairs that had a reduction in travel

time by both means of transport. Estimating a linear regression of change in air travel

time on the change in highway travel time gives a slope of -0.02 not statistically differ-

ent from zero, with a R2 of 0.00005.26 Figure 39 repeats the exercise where MSA-pairs

are weighted by the amount of establishment-technology pairs used to estimate the

elasticity of citations to travel time (equation (1)). In this case the estimated regression

has a slope of 0.73 statistically significant at the 1% level and a R2 of 0.09.27

In Tables 4 and 19 we present the results of adding highway travel time as control.

The low correlation between the change in travel time by highway and airplane implies

that the estimated elasticity of citations to air travel time remains almost unchanged,

268.7% of MSA-pairs had an increase in travel time either by highway or by airplane. The regression
with all MSA-pairs has a slope of 0.60 significant at the 1% level. However, the R2 of the regression
remains very low: 0.0046.

27With all MSA-pairs the slope is 1.01 statistically significant at the 1% level and the R2 is 0.04.
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relative to the baseline estimation.28

Figure 38: Change travel time by airplane and
highway 1951-1966

Figure 39: Change travel time by airplane and
highway 1951-1966, weighted

28In order to perform a test of statistical difference of coefficients we would need to compute the
covariance between the two regressions. Assuming the covariance is zero, in columns (1) and (2) 19
the coefficients of air travel time at +2,000km are not significantly different.
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PPML

Dep. variable: citations
(1) (2) (3) (4) (5) (6) (7) (8)

log(travel time) × 0-300km -0.014 -0.013 -0.016 -0.004 -0.015 -0.004 -0.007 -0.007
(0.041) (0.042) (0.041) (0.042) (0.042) (0.042) (0.042) (0.042)

log(travel time) × 300-1,000km -0.095∗∗∗ -0.091∗∗∗ -0.091∗∗∗ -0.066∗∗ -0.089∗∗∗ -0.070∗∗ -0.067∗∗ -0.067∗∗
(0.025) (0.026) (0.025) (0.029) (0.026) (0.029) (0.029) (0.029)

log(travel time) × 1000-2,000km -0.092∗∗ -0.086∗∗ -0.075∗ -0.037 -0.073∗ -0.037 -0.032 -0.032
(0.041) (0.043) (0.041) (0.050) (0.043) (0.050) (0.050) (0.050)

log(travel time) × +2,000km -0.177∗∗∗ -0.170∗∗∗ -0.167∗∗∗ -0.112∗∗ -0.164∗∗∗ -0.112∗∗ -0.112∗∗ -0.112∗∗
(0.048) (0.050) (0.049) (0.056) (0.051) (0.056) (0.057) (0.057)

N obs. effective 5,147,161 5,147,161 5,147,161 5,147,161 5,147,161 5,147,161 5,147,161 5,147,161
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

Controls:
log(highway time) - Yes - - Yes Yes - Yes
log(telephone share) × time - - Yes - Yes - Yes Yes
log(distance) × time - - - Yes - Yes Yes Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 19: Elasticity of citations to travel time: additional controls
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G in
location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it
is set to 1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max].
Relative to (1), columns (2) to (8) contain additional controls. Log highway time between i and j changes in every
time period t. The log mean share of households with telephone line in ij pair interacted in 1960 is interacted with a
time dummy. Log distance ij is interacted with a time dummy. When FiGjhk has positive citations in at least one
period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at
the non-directional location in parentheses (ij is the same non-directional location pair as ji). R2 is computed as the
squared correlation between observed and fitted values.

Frequency adjusted travel time

The frequency of flights may have changed simultaneously with the introduction of jet

airplanes. The change in travel time could then be consequence of higher frequency

rather than changes in airplanes’ speed. Given that some MSA pairs are connected

indirectly (with connecting flights), accounting for frequency is not straight forward:

the frequency of each leg of the flight route matters (actually, it is not only frequency of

each leg but also the synchronization among all potential legs). In order to take into

account potential changes in the frequency of flights we computed the daily average
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travel time. This travel time is the average across all fastest travel times if the passenger

was to depart at each full hour (1am, 2am, ..., 1pm, 2pm, etc.). The computation of this

travel time includes the waiting time that is affected by frequency: the time until first

departure and layover time of each connecting flight. Hence, the daily average travel

time is a frequency-adjusted travel time: changes in the daily average travel time that

are larger than in the fastest travel time denote that frequency of flights increased and

therefore there is less waiting time. If we observe the reverse that means that frequency

did not improve as much as the speed of airplanes.

Figure 40 shows the within MSA-pair decrease in the fastest travel time and the daily

average travel time.29 Both measures of travel time follow a similar pattern: slight

decrease in 1956, a stronger decrease in 1961 especially for long distance routes, and

a further decline in 1966. However, we observe that the decrease of the fastest travel

time is on average larger than the one of the daily average travel time: the frequency of

flights, if any, attenuated the potential decrease in travel time from the improvements

in airplanes’ speed. This observation is also in line with a comparison of the fastest

travel time with and without layover time (Figure 28 in the Appendix of the paper):

layover time attenuated the change in travel time.

In table 20 we estimated the elasticity of citations to travel time using first the fastest

travel time (baseline, columns 1 and 2) and the daily average travel time (columns 3

and 4). The estimated elasticity is similar using both measures, which gives confidence

that our results are not driven by changes in the frequency of flights.

29The within MSA-pair correlation of the (1951-1966) change in fastest travel time and the change daily
average travel time is 0.60.
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Figure 40: Change in MSAs travel time: fastest travel time and daily average travel
time
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PPML
not bias-corrected

Dep. variable: citations
(1) (2) (3) (4)

log(travel time) −0.088∗∗∗
(0.023)

log(travel time) × 0-300km −0.014
(0.041)

log(travel time) × 300-1,000km −0.095∗∗∗
(0.025)

log(travel time) × 1000-2,000km −0.092∗∗
(0.041)

log(travel time) × +2,000km −0.177∗∗∗
(0.048)

log(travel time daily avg) −0.093∗∗∗
(0.034)

log(travel time daily avg) × 0-300km −0.001
(0.039)

log(travel time daily avg) × 300-1,000km −0.097∗∗
(0.038)

log(travel time daily avg) × 1000-2,000km −0.166∗∗
(0.069)

log(travel time daily avg) × +2,000km −0.220∗∗∗
(0.063)

N obs. effective 5,147,161 5,147,161 5,147,161 5,147,161
R2 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 20: Elasticity of citations to travel time: daily average travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) use the daily average travel
time, which is computed as the average of the fastest travel time departing at every full hour (the average across
all 24 potential departing times). Standard errors clustered at the non-directional location are presented between
parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between
observed and fitted values.

G.2. Creation of knowledge

G.2.1. Heterogeneous effects
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Dependent Variable: Patents
Patents

quality weighted
(1) (2) (3) (4)

log(knowledge access) 9.1∗∗∗ 10.2∗∗∗
(3.3) (3.6)

log(knowledge access quality weighted) 6.9∗∗ 7.8∗∗∗
(2.9) (3.1)

R2 0.85 0.85 0.86 0.86
N obs. effective 991,480 991,480 991,284 991,284
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 21: Effect of knowledge access on patents, quality weighted
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp[ρ log(KAiht) + FEFih + FEit + FEht]× ξFiht, for patents filed by establishment of firm F in location i, technology h
and time period t. KA iht is knowledge access of establishments in location i technology h and time period t. Columns
(1) and (2) use number of patents as dependent variable while columns (3) and (4) quality-weighted patents. Columns
(1) and (3) use log(KAiht) as explanatory variable while columns (2) and (4) use a quality weighted log(KAiht).
Quality weights are the 5-year percentile of quality measure after demeaning by year fixed effects computed in
Kelly et al. (2021). Weighting by the 10-year percentile of quality gives similar results. Standard errors clustered at
the location-technology level ih are presented in parentheses. R2 is computed as the squared correlation between
observed and fitted values.

G.2.2. IV PPML: centering instrumental knowledge access

The objective of the recentered instrument is to clean any non-random variation that

may be mechanically introduced due to geography. Locations that are geographically

far from the initial innovation centers are more likely to have a larger increase in knowl-

edge access with the roll out of jet airplanes, in any realization of the flight network. In

order to purge out this potentially non-random variation, we compute the expected

value of the instrument considering multiple alternative flight networks and subtract it

from the realized instrument.

We construct the expected instrument E[log(K̃Aiht)] as follows:

1. Count the amount of airport-pairs connected by a non-stop flight in 1951, label

this the number of 1951 connections.

2. Set a new seed number for random draws.

3. For each unique origin airport present in 1951, create a counterfactual connection

by drawing a random destination airport (different to the origin) present in 1951.
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Repeat as many times until the amount of unique counterfactual connections is

equal to the number of 1951 connections. As number of 1951 connections is larger

than the number of origins and destinations, some origins and destinations will

be repeated.

4. Check if all 1951 origin and destination airports are present in the randomized

connections. Some destinations may not be present due to the random draws.

If some destination (origin) is missing, drop a counterfactual connection of a

destination (origin) that has at least two origins (destinations). Draw a new

random connection for the missing destination (origin). Repeat this step until all

origins and destinations are present in the counterfactual network.

5. Check if the counterfactual network is a connected set (i.e. it would be possible to

route from any airport to any other airport through intermediary connections). If

it is not a connected set, drop this iteration of the counterfactual network and go

back to step 2.

6. Predict flight duration of each counterfactual connection in each year using

airport-to-airport distance and the estimated intercept and slope of each year

7. Using the predicted travel time in 1951, compute the fastest path between each

airport pair, including directly and indirectly connected airport pairs

8. Match airports to MSAs. For each MSA-pair, get the airport-pair and the respec-

tive path that has the minimum travel in 1951

9. Using the predicted flight duration for each counterfactual connection in each

year, compute the counterfactual travel time of the 1951-optimal path for each

MSA-pair and year

10. Repeat steps 2 to 9 for 2,000 times

11. With each counterfactual network, compute the counterfactual knowledge access

of each MSA-technology-year.
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12. Obtain the expected instrument E[log(K̃Aiht)]: within each MSA-technology-year,

compute the across-counterfactual network average of the log counterfactual

knowledge access

We then recenter the instrument as follows:

log(K̃Aiht)centered = log(K̃Aiht)− E[log(K̃Aiht)] (7)

G.2.3. IV PPML: first and second stage estimation, non-centered instrument

First stage
OLS

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2)

log(knowledge access instrument) 1.01∗∗∗
(0.03)

log(knowledge access) 10.20∗
(5.60)

residual −2.29
(6.15)

N obs. effective 991, 480 991, 480
R2 0.99 0.85
Within R2 0.53
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 22: Elasticity of patents to knowledge access: first and second stage IV PPML,
non-centered instrument

The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih +

FEit + FEht] × ξFiht, where log(KAiht) is instrumented with log(K̃Aiht) . Column (1) shows the results of the first
stage regression estimated by OLS. Column (2) shows the result of the second stage regression estimated by Poisson
Pseudo Maximum Likelihood , including the estimated residuals of the first stage as controls.
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OLS First stage
reference quartile

OLS First stage
3rd quartile

OLS First stage
2nd quartile

OLS First stage
1st quartile

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2) (3) (4) (5)

log(knowledge access instrument) 1.00∗∗∗ 0.01 0.03 0.00
(0.03) (0.06) (0.03) (0.01)

log(knowledge access instrument) × 3rd quartile 0.01 1.12∗∗∗ −0.00 −0.00
(0.01) (0.03) (0.01) (0.01)

log(knowledge access instrument) × 2nd quartile 0.00 −0.02 1.13∗∗∗ −0.01
(0.01) (0.04) (0.03) (0.01)

log(knowledge access instrument) × 1st quartile 0.01 0.01 −0.04 1.16∗∗∗
(0.01) (0.04) (0.04) (0.04)

log(knowledge access) 9.39∗
(5.62)

log(knowledge access) × 3rd quartile 2.10∗∗∗
(0.65)

log(knowledge access) × 2nd quartile 3.79∗∗∗
(1.01)

log(knowledge access) × 1st quartile 5.20∗∗∗
(1.31)

residual −2.37
(6.18)

residual × 3rd quartile −2.30∗
(1.29)

residual × 2nd quartile −3.78∗∗
(1.86)

residual × 1st quartile −7.19∗∗
(3.09)

N obs. effective 991, 480 991, 480 991, 480 991, 480 991, 480
R2 1.00 1.00 1.00 1.00 0.85
Within R2 0.53 0.89 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 23: Elasticity of patents to knowledge access: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [∑q ρq × 1{quartileih =

q} × log(KAiht) + FEFih + FEit + FEht] × ξFiht, where log(KAiht) is instrumented with log(K̃Aiht) . Column (1) to (4)
show the results of the first stage regression estimated by OLS. Coefficients of the 4 interactions of the instrument can
be identified due to the presence of the fixed effects, e.g. after demeaning by fixed effects there is residual variation
that allows to identify the 4 coefficients in each regression of the first stage. Column (5) shows the result of the second
stage regression estimated by Poisson Pseudo Maximum Likelihood, including the estimated residuals of the first
stage as controls.
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G.2.4. IV PPML: first and second stage estimation, centered instrument

First stage
OLS

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2)

centered log(knowledge access instrument) 1.24∗∗∗
(0.06)

log(knowledge access) 10.22∗
(5.63)

residual 2.15
(5.89)

N obs. effective 991, 480 991, 480
R2 0.99 0.85
Within R2 0.48
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 24: Elasticity of patents to knowledge access: first and second stage IV PPML,
centered instrument

The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih +

FEit + FEht] × ξFiht, where log(KAiht) is instrumented with centered log(K̃Aiht) . Column (1) shows the results of
the first stage regression estimated by OLS. Column (2) shows the result of the second stage regression estimated by
Poisson Pseudo Maximum Likelihood , including the estimated residuals of the first stage as controls.
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OLS First stage
reference quartile

OLS First stage
3rd quartile

OLS First stage
2nd quartile

OLS First stage
1st quartile

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2) (3) (4) (5)

centered log(knowledge access instrument) 1.24∗∗∗ 0.36 0.31∗∗ 0.01
(0.06) (0.31) (0.15) (0.03)

centered log(knowledge access instrument) × 3rd quartile -0.01 -1.61∗∗∗ 0.07∗∗ 0.00
(0.01) (0.21) (0.03) (0.00)

centered log(knowledge access instrument) × 2nd quartile 0.00 0.04 -1.49∗∗∗ 0.03
(0.01) (0.25) (0.19) (0.02)

centered log(knowledge access instrument) × 1st quartile -0.01 0.03 0.47∗∗ -1.91∗∗∗
(0.02) (0.23) (0.21) (0.18)

log(knowledge access) 7.61
(5.60)

log(knowledge access) × 3rd quartile 3.54∗∗∗
(1.06)

log(knowledge access) × 2nd quartile 6.89∗∗∗
(2.06)

log(knowledge access) × 1st quartile 8.05∗∗∗
(2.21)

residual 0.27
(5.86)

residual × 3rd quartile −2.54∗∗
(1.12)

residual × 2nd quartile −5.04∗∗
(2.10)

residual × 1st quartile −5.17∗∗
(2.28)

N obs. effective 991, 480 991, 480 991, 480 991, 480 991, 480
R2 1.00 1.00 1.00 1.00 0.85
Within R2 0.48 0.26 0.30 0.43
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 25: Elasticity of patents to knowledge access: first and second stage IV PPML,
centered instrument

The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [∑q ρq × 1{quartileih =

q} × log(KAiht) + FEFih + FEit + FEht] × ξFiht, where log(KAiht) is instrumented with centered log(K̃Aiht) . Column
(1) to (4) show the results of the first stage regression estimated by OLS. Coefficients of the 4 interactions of the
instrument can be identified due to the presence of the fixed effects, e.g. after demeaning by fixed effects there is
residual variation that allows to identify the 4 coefficients in each regression of the first stage. Column (5) shows the
result of the second stage regression estimated by Poisson Pseudo Maximum Likelihood, including the estimated
residuals of the first stage as controls.

A77



G.2.5. Robustness
Baseline Quartile

absolute
Quartile

per capita
Dependent Variable: Patents

(1) (2) (3)

log(knowledge access) 9.11∗∗∗ 8.41∗∗ 6.98∗∗
(3.29) (3.31) (3.33)

log(knowledge access) × quartile 0.50 1.86∗∗∗ 0.68∗∗
(0.53) (0.30)

log(knowledge access) × quartile 0.25 3.42∗∗∗ 1.42∗∗∗
(0.81) (0.46)

log(knowledge access) × quartile 0.00 4.50∗∗∗ 3.63∗∗∗
(1.17) (0.69)

N obs. effective 991,480 991,480 991,480
R2 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 26: Elasticity of new patents to knowledge access: absolute and per capita MSA
innovativeness

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
within technology using the absolute level of patents in the MSA-technology in 1949-1953. Column (3) computes the
quartile of innovativeness using patents per capita in the MSA-technology in 1949-1953 using 1950 population. Higher
quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Standard
errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation
between observed and fitted values.
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PPML β
by distance +300km +1,000km +2,000km

Dependent Variable: Patents
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(knowledge access) 9.11∗∗∗ 8.41∗∗ 13.98∗∗∗ 12.71∗∗∗ 8.97∗∗ 7.73∗ 16.98∗∗∗ 17.21∗∗∗ 11.42 9.22
(3.29) (3.31) (4.10) (4.19) (4.19) (4.19) (5.25) (5.18) (7.38) (7.15)

log(knowledge access) × 3rd quartile 1.86∗∗∗ 2.11∗∗∗ 1.92∗∗∗ 1.87∗∗∗ 1.75∗∗∗
(0.53) (0.63) (0.52) (0.48) (0.44)

log(knowledge access) × 2nd quartile 3.42∗∗∗ 4.06∗∗∗ 3.78∗∗∗ 3.58∗∗∗ 3.29∗∗∗
(0.81) (1.03) (0.80) (0.73) (0.66)

log(knowledge access) × 1st quartile 4.50∗∗∗ 5.67∗∗∗ 4.95∗∗∗ 4.77∗∗∗ 4.22∗∗∗
(1.17) (1.49) (1.13) (1.11) (0.97)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 27: Elasticity of new patents to knowledge access, varying beta or distance.
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
using patents in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is
used as reference category. Relative to columns (1) and (2), columns (3) and (4) compute Knowledge Access using
four distance-specific β parameter according to distance bins between i and j. The bins are [0km, 300km], (300km,
1000km], (1000km, 2000km], +2,000km. Columns (5) to (10) use the same β as column (1) and (2), but computing
Knowledge Access with a truncated sample of j that are further than a certain distance threshold from i. Standard
errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation
between observed and fitted values.
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PPML OLS
Dependent Variable: Patents log(Patents)

(1) (2) (3) (4)

log(knowledge access) 9.11∗∗∗ 8.41∗∗ 6.16∗∗ 5.69∗∗
(3.29) (3.31) (2.87) (2.88)

log(knowledge access) × 3rd quartile 1.86∗∗∗ 0.83∗
(0.53) (0.46)

log(knowledge access) × 2nd quartile 3.42∗∗∗ 2.38∗∗
(0.81) (0.93)

log(knowledge access) × 1st quartile 4.50∗∗∗ 3.45∗∗
(1.17) (1.62)

N obs. effective 991,480 991,480 300,539 300,539
R2 0.85 0.85 0.87 0.87
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 28: Elasticity of new patents to knowledge access: PPML and OLS
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (3) estimates log(Patents)Fiht = ρ log(KAiht) + FEFih + FEit + FEht + ξFiht. Columns (2) and (4) open
the coefficient ρ by the quartile of innovativeness of location i within technology h, computed within technology
using the absolute level of patents in the MSA-technology in 1949-1953. Higher quartile indicates higher initial level
of innovativeness. The fourth quartile is used as reference category. Difference in amount of observations is due
to dropping zeros in columns (3) and (4). Standard errors clustered at the location-technology ih are presented in
parentheses. R2 is computed as the squared correlation between observed and fitted values.
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Access to capital

We construct four measures of access to capital using 1949-1953 market capitalization

of firms listed in the stock market. The four measures are similar in their essence but

differ in the computation of a firm’s technology and the firm’s location. The measure is

computed as follows:

capital accessiht = ∑
k

ψhk ∑
j, j ̸=i

Capital stockjk,t=1951 × travel timeξ
ijt (8)

where Capital stockjk,t=1951 is a proxy for the capital which is specific to technology k

located in j at the initial time period 1951. ψhk is an input-output weight of capital flows

and ξ is the elasticity of capital flows between to travel time. As a proxy for capital we

use market capitalization of firms.

We construct four measures of capital accessiht which differ on: (i) the way we define

the allocation of the firm’s capital to each location (either using all inventors’ locations

or only the assigned headquarters), and (ii) the way we allocate a firm’s capital across

technologies (using the share of a technology within the firm, or relative to the national

share of that technology). We use COMPUSTAT as our source of data for market

capitalization.

We proceed as follows:

1. Use share’s market price at closure calendar year multiplied by the number shares

outstanding. We use the variables prcc c and csho to maximize coverage of firms

given that other variables have missing value for many firms.

2. Take the yearly average market capitalization to maximize coverage (many firms

have missing in a certain year). This step potentially introduces measurement

error due to changes in total stock market capitalization but allows us to increase

the amount of firms included in the sample.

3. Determine a firm’s MSA using patent inventor location. Two ways to determine
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the location, 1. only HQ location, 2. all locations where the firm had inventors

applying for patents in 1949-1953

4. Determine the share of each technology within the firm using patent data. Two

ways to determine the share of technology: 1. The share of each technology within

firm, 2. The share of each technology within firm relative to national share

5. In the absence of data on a capital input-output weight, assume it is the same as

the technology input-output weight, i.e. ψhk = ωhk

6. In the absence of data on the elasticity of capital flows to travel time assume

ξ = −1

The four measures of access to capital are as follows:

1. Attribute all capital to headquarters and use the absolute share of each technology

in the firm

2. Attribute all capital to headquarters and use the share of each technology in the

firm relative to the national share

3. Attribute capital to establishments using their pat share and use the absolute

share of each technology in the firm

4. Attribute capital to establishments using their pat share and use the share of each

technology in the firm relative to the national share

Table 29 shows the results of estimating the elasticity of new patents to knowledge

access while at the same time controlling for capital access.
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Dependent Variable: Patents
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(knowledge access) 9.11∗∗∗ 8.97∗∗ 10.17∗∗∗ 9.61∗∗ 11.64∗∗∗
(3.29) (4.05) (3.88) (4.23) (3.99)

log(finance access hq) 0.54∗∗ 0.02
(0.26) (0.30)

log(finance access hq rel) 0.40 -0.14
(0.25) (0.28)

log(finance access est) 0.56∗ -0.07
(0.31) (0.39)

log(finance access est rel) 0.31 -0.40
(0.30) (0.38)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 29: Elasticity of new patents to knowledge access and finance access
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) to (5) use as regressor the finance access of establishments in location i technology h and time period
t, where the measure of finance access changes across columns. Columns (6) to (9) estimate the regression using
both knowledge access and finance access. Standard errors clustered at the location-technology ih are presented in
parentheses. R2 is computed as the squared correlation between observed and fitted values.
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Sensitivity to β
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β ρ β × ρ
Predicted yearly

growth p.p.
Share yearly

growth explained
Predicted yearly

growth differential p.p.
Share yearly growth

differential explained
-0.206 9.11 -1.88 3.47 0.78 1.1 0.21
-0.1 19.35 -1.94 3.5 0.78 1.07 0.2
-0.2 9.4 -1.88 3.47 0.78 1.1 0.21
-0.3 6.1 -1.83 3.45 0.77 1.14 0.22
-0.4 4.48 -1.79 3.44 0.77 1.16 0.22
-0.5 3.52 -1.76 3.44 0.77 1.19 0.23
-0.6 2.91 -1.74 3.45 0.77 1.2 0.23
-0.7 2.48 -1.73 3.47 0.78 1.22 0.23
-0.8 2.17 -1.73 3.5 0.78 1.22 0.23
-0.9 1.93 -1.73 3.52 0.79 1.24 0.24
-1.0 1.72 -1.72 3.51 0.79 1.28 0.24
-2.0 0.58 -1.16 2.8 0.63 1.55 0.3
-5.0 0.04 -0.19 1.19 0.27 3.65 0.7
-8.0 0.09 -0.76 8.22 1.84 6.96 1.33
-10.0 0.11 -1.08 15.16 3.4 8.19 1.56
-20.0 0.13 -2.63 69.8 15.65 21.66 4.14
-50.0 0.16 -8.22 531.34 119.16 219.49 41.94

-100.0 0.12 -12.33 5428.85 1217.49 2971.74 567.91

Table 30: Effect of knowledge access on new patents: varying the value of elasticity of
knowledge diffusion

The table shows for different values of β (column 1) used to compute knowledge access, the estimated value of
ρ (column 2). Columns 3 shows that for β values in the range estimated, the multiplication of β and ρ remains
stable. Column 4 shows the predicted yearly growth rate of patenting, averaged across MSAs, and column 5 divides
the predicted value of column 4 by the observed value. Column 6 shows, using quartile-specific coefficients ρ, the
predicted differential yearly growth rate between MSAs in the lowest and highest quartile of initial innovativeness.
Column 7 shows the ratio between the predicted value of column 6 and the observed value.
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