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1. Introduction

The geography of innovation in the United States underwent a radical shift after World

War II. In 1950, the number of patents per capita in the South and the West was less

than half as high as in the Northeast and the Midwest. By 2010, this difference had

disappeared completely with the emergence of prominent technology clusters in the

South and the West. Developing technology clusters is of great interest to policy makers

as this may have strong effects on the local economy (Moretti (2010), Moretti and Thulin

(2013)). While the literature has emphasized knowledge spillovers as one of the drivers

of innovation (Storper and Venables (2004), Furman and Stern (2011), Acemoglu et al.

(2016)), highlighting the role of physical proximity for facilitating face to face interac-

tions (Glaeser (2011), Carlino and Kerr (2015)), there is scarce evidence on the effect of

long distance transport infrastructure on knowledge spillovers and the geography of

innovation (Agrawal et al. (2017), Chatterji et al. (2014)).

This paper provides new causal evidence on this question by exploiting as a quasi-

natural experiment the beginning of the Jet Age in the United States. During the 1950s

the introduction of jet engines into civil aviation led to a large nationwide reduction in

travel time. For example, travel time between New York City and San Francisco went

from 11 hours in 1951 to 5 hours and 35 minutes in 1966. This large reduction in travel

time potentially facilitated long distance face to face interactions.

We find that the decrease in travel time led to an increase in the diffusion of knowl-

edge, which we convert into an increase in access to knowledge. Next, we find that the

increase in access to knowledge spurred an increase in the creation of new knowledge.

The results provide evidence that jet airplanes drove innovation convergence across

locations and contributed to the shift in innovation activity towards the South and the

West of the United States.

We start by constructing a new dataset of the flight network in the United States
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during the 1950s and 1960s. We digitize historical flight schedules of the major interstate

airlines operating in the period and obtain the fastest route between every two airports

in the network.1 We document that between 1951 and 1966 travel time decreased on

average by 29%, and the decrease is on average of 41% for airports located more than

2,000km apart.2

This nationwide shock was arguably exogenous as it happened in a strictly regulated

environment. We decompose the change in travel time and find that 90% of the change

is due to the improvement in aircrafts’ speed, while 10% is due to a change in the flight

routes. This is consistent with the fact that during this period the Civil Aeronautics

Board (CAB) was imposing strong regulation in the interstate airline market. With the

objective to promote a stable airline industry, the CAB determined ticket prices and

restricted entry of airlines into new or existing routes.

Additionally, during the 1950s and 1960s airplanes were predominantly used to

transport people and not goods. Hence, the change in travel time represented a shock

to the mobility of people while not significantly affecting the shipment of goods.

To study knowledge creation and diffusion we use patent data. We follow Jaffe

et al. (1993) and use patent citations as our observable measure of knowledge flow. We

assemble one dataset with all corporate patents granted by the United States Patent

and Trademark Office (USPTO) with filing year between 1949 and 1968, which includes

for each patent: filing year, technology classification, location (Metropolitan Statistical

Area, MSA) of the inventors when they applied for the patent, owner of the patent and

citations to other patents which were granted by the USPTO.

We document three facts of patenting activity during our sample period. First, patent

1The 6 domestic airlines in our data accounted for 75% of total air passenger transport.
2New York and Boston are about 300km apart, while New York and San Francisco are located about 4,130

km apart. Between 1951 and 1966 we observe a reduction of travel time of 23% (13 minutes reduction)
between New York and Boston, while the reduction is of 49% (5 hours 25 minutes reduction) between
New York and San Francisco.
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growth was stronger in initially less innovative MSAs. Second, it was also stronger in

the South and the West of the US. Third, the mass of citations shifted towards longer

distances. Our results show that the decrease in travel time contributed to all three facts.

We do our analysis in two steps. In the first step, we estimate a gravity equation

to obtain the elasticity of citations to travel time. We identify the elasticity exploiting

only within establishment-pair across-time variation in citations and travel time. The

estimated elasticity implies that citations increased on average 2.4% due to the decrease

in travel time between 1951 and 1966. We find that the absolute value of the elasticity

is increasing with the distance between the citing and cited establishments. At a dis-

tance of more than 2,000km, the change in travel time implies an increase in citations of

6.9%. This accounts for 32.7% of the observed increase in citations in this distance range.

In order to rule out the possibility that the opening of new routes or the timing of

adoption of jets at the route level was driven by variables that also affected knowledge

flows, we perform an instrumental variables estimation. We instrument the observed

travel time with a fictitious travel time computed by fixing routes to the initial time

period and assuming in each year all routes are operated with the year’s average

airplane. Hence, changes in fictitious travel time are only due to the nationwide roll

out of jets and is thus independent of decisions at the route level. The key source

of variation in the instrument is the time-variation of in-flight speed which affects

the relative importance of the amount of layovers relative to the distance between

two MSAs. The results do not change significantly, reflecting the reduced scope for

endogeneity of travel time. In addition, the results are robust to controlling for potential

confounding factors such as changes in highway travel time, telephone connectivity

and flight ticket prices. Finally, the results also remain after restricting the sample to

contain only establishments that existed in the initial time period.

In the second step, using the estimated elasticity of diffusion of knowledge, we com-

pute a measure of knowledge access that is specific to each location-technology. The
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measure captures changes in knowledge access that are only consequence of the change

in travel time. We use knowledge access as an externality that affects the production

of new patents and estimate the elasticity of new patents to knowledge access. We

identify the elasticity at the establishment level comparing only across time variation

in patents and knowledge access across establishments within a location, conditional

on aggregate technological trends. Thus, the identification is independent of location

specific changes in local population or R&D subsidies. The estimated elasticity implies

that the amount of new patents filed increased at a yearly growth rate of 3.5% due

to the increase in knowledge access, which accounts for 79.5% of the observed yearly

growth rate.

Given the reduction in travel time was larger for longer distances, the increase in

knowledge access was stronger in locations geographically far from the initial innova-

tion centers located in the Midwest and the Northeast. Hence, by increasing access to

knowledge, the reduction in travel time led to a shift in the distribution of innovative

activity towards the South and the West of the US. The South and the West had an

average yearly growth rate of patenting 2.1 percentage points higher than the Northeast

and the Midwest during our sample period. The change in travel time explains 35% of

the observed differential growth.

We find that the value of the elasticity of patents to knowledge access is bigger in

magnitude for establishments located in initially less innovative locations. Within each

technology class, we rank locations according to the amount of patents in the initial time

period and split them into four quartiles. We find that the increase in knowledge access

predicts a 4.5% yearly growth rate of patenting in locations in the lowest quartile of

initial innovativeness, while it predicts a 3.4% yearly growth rate in the highest quartile.

The difference in growth rates indicates that the increase in knowledge access acted

as a convergence force between locations, and it can explain 21% of the convergence

observed in the data. Results go in the same direction if we rank locations in terms of

patents per capita.
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Our results are robust to controlling for changes in market access by highway, changes

in market access by airplanes and time changing telephone connectivity. Results do

not change if we compute knowledge access using only knowledge located at long

distances. Additionally, we present suggestive evidence that the results are not driven

by a decrease in financial frictions.

We also estimate the elasticity by instrumental variables, constructing an instrumen-

tal knowledge access with the instrumental travel time. Following Borusyak and Hull

(2023) we may be concerned that the instrumental knowledge access may contain a

non-random component which is consequence of the underlying geography of the US:

given that most innovation was initially located in the Northeast and Midwest, the

South and the West of the US might have seen larger increases in knowledge access

under any potential flight network due to their larger distance to initial knowledge

centers. We estimate the elasticity with the instrumental knowledge access and with

a recentered version by subtracting the expected instrumental knowledge access as

suggested by Borusyak and Hull (2023). In both cases results go in the same direction

as in the baseline analysis.

This paper contributes to multiple branches of literature. First, it contributes to

the literature on agglomeration and knowledge spillovers. Agglomeration forces are

usually understood as happening in a geographically localized manner (Glaeser (2011),

Arzaghi and Henderson (2008)). The literature on technology clusters also documents

this fact (Duranton et al. (2009), Kerr and Robert-Nicoud (2020), Moretti (2021)). The

seminal paper Jaffe et al. (1993) finds that patent citations decay rapidly with distance.

Our results show that jet airplanes allowed long distance knowledge spillovers, facil-

itating the development of technology clusters in other regions. The literature that

provides evidence of knowledge spillovers usually focuses on changes in the supply of

knowledge (Bloom et al. (2013), Acemoglu et al. (2016)). In our case we fix the supply

of knowledge and focus on changes in the degree of accessibility.
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We contribute to the literature on transportation by constructing a novel data set and

studying a new quasi-natural experiment that isolates a shock to the mobility of people.

To the best of our knowledge, this is the first quantitative analysis of the change in air

travel time due to the roll out of jet airplanes in commercial aviation. Other papers have

studied the impact of transportation improvements on innovation. Agrawal et al. (2017)

study the impact on innovation of a region’s stock of highways, while Perlman (2016)

uses 19th century data on locations’ density of railroads. Andersson et al. (2017) and

Tsiachtsiras (2021) do so using the historical railroad expansion in Sweden and France.

Relative to them, we contribute by exploiting a quasi-natural experiment that allows

us to isolate a channel of face to face interactions, with little scope for a trade channel.

In contemporaneous work Bai et al. (2021) estimate the elasticity of patent citations

to air travel time using the introduction of new airline routes in a more recent period,

post deregulation of the airline market. Relative to them, we contribute by exploiting

a nationwide shock that creates heterogeneous changes in travel time across routes

and in which the risk of endogeneity is limited. Our work is related to other literature

which found that business travel affects innovation (Hovhannisyan and Keller (2015)),

trade (Söderlund (2020)) and industrial activity (Coscia et al. (2020)). Also, air travel

shapes collaboration between researchers (Catalini et al. (2020)).

The impact of transportation improvements in economic outcomes has long been

a subject of study (Fogel (1963), Baum-Snow (2007), Michaels (2008), Donaldson and

Hornbeck (2016), Campante and Yanagizawa-Drott (2017), Jaworski and Kitchens (2019)

and Herzog (2021)). Our convergence result contrasts with previous studies on im-

provements in other means of transport. Pascali (2017) finds that the introduction

of steam engine vessels in the second half of the 19th century led to an increase in

international trade which contributed to economic divergence between countries. Faber

(2014) finds that the expansion of the highway system in China led to a reduction of

GDP growth of peripheral counties, with evidence suggesting a trade channel. While

both papers emphasize a trade channel, in our set up the trade channel would not be
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of first order. Hence, we uncover a new effect of improved connectivity. Our paper is

related to Campante and Yanagizawa-Drott (2017) who study changes in international

airplane connectivity, finding that it affects capital flows and the spatial distribution of

economic activity.

Finally, we contribute to the contemporaneous literature on innovation on the post

WW2 period. Gross and Sampat (2023) study the long-term effects of the public R&D

funding by the Office of Scientific Research and Development (OSRD) during WW2.

They find that this R&D shock enlarged pre-existing patenting gaps across locations.

Kantor and Whalley (2023) study the effects of NASA spending and the race to the

moon during the 1960s, finding stronger growth in county-industries that were more

space-relevant before the Space Race. We contribute to them by studying a shock that

it is different in its nature: improved connectivity, rather than increased expenditure.

We provide evidence that this shock contributed to the post WW2 shift in innovative

activity towards the South and the West. Additionally, we show that improved connec-

tivity had a differential effect on innovation which contributed to closing the patenting

gap between locations. This is in line with the decline in innovation concentration

documented in Andrews and Whalley (2021).

The paper is structured as follows. First, we present a simple theoretical framework

which lays the foundations of how to think about the creation and diffusion of knowl-

edge. The framework shows the two key parameters to estimate. Second, we describe

the historical context in which jet airplanes were introduced. Third, we present the

two datasets that we use: travel times and patents. Fourth, we perform the analysis to

estimate the impact of travel time on the diffusion of knowledge, and convert it into

changes of access to knowledge to study the creation of knowledge. Fifth, we conclude.
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2. Conceptual framework

This section lays out a simple theoretical framework to think about the creation of

knowledge. The framework clearly shows the two key parameters to estimate empiri-

cally: the elasticity of knowledge diffusion to travel time and the elasticity of knowledge

creation to knowledge access.

Following Carlino and Kerr (2015) we consider a production function of knowledge

which includes external returns in the form of knowledge spillovers. Knowledge

output of a firm depends not only on firm’s specific characteristics as its idiosyncratic

productivity and input decisions, but also on an externality due to knowledge spillovers.

We consider a production function of knowledge of the following form:

New KnowledgeFi = f (zFi, inputsFi) × Knowledge Access
ρ
i (1)

where New KnowledgeFi is the knowledge created by firm F located in i. The output

of Fi depends on an internal component and on an external component. The internal

component is the firm’s idiosyncratic productivity zFi and choice of inputs inputsFi.

The external component represents the externality to which all firms F in location i are

exposed to: Knowledge Accessi. This externality, Knowledge Access, represents the total

amount of knowledge spillovers that the firm is exposed to. The degree to which the

externality affects the production of knowledge is governed by the parameter ρ. If ρ is

zero then knowledge spillovers have no effect on the creation of new knowledge. On

the other hand, a positive ρ implies that, keeping productivity and inputs constant, an

increase in the level of knowledge spillovers leads to an increase in firm F’s creation of

new knowledge.

A long standing literature studies the importance of knowledge spillovers for the

creation of new knowledge.3 The concept of knowledge spillovers goes back at least to

3The chapters of Audretsch and Feldman (2004) and Carlino and Kerr (2015) in the Handbook of
Regional and Urban Economics provide an excellent review on the literature on knowledge spillovers,
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Marshall (1890) who explains it as one of the agglomeration forces. Krugman (1991)

refers to knowledge spillovers as one of the justifications for external increasing returns,

and that the degree of spillovers are dependent on physical distance. The geographic

decay of spillovers is grounded in the fact that not all knowledge is easy to codify,

usually referred to as tacit knowledge, and geographic proximity increases the degree

of knowledge spillovers by facilitating face to face interactions (Storper and Venables

(2004), Glaeser (2011)). Hence, we consider the total amount of knowledge spillovers to

which the firm F in location i is exposed to has the following functional form:

Knowledge Accessi = ∑
j

Knowledge stockj × distance
β

ij (2)

where Knowledge stockj is the total amount of knowledge in location j (which is non-

negative) that could potentially spill over to location i and distanceij is a measure of

distance from j to i. The amount of knowledge that spills over from j to i depends

on distance and the degree with which distance impedes spillovers, governed by the

parameter β. If β is zero, then distance does not affect knowledge spillovers from j to i

and all locations perfectly share the same level of Knowledge Access. On the contrary, a

negative β implies a decay in knowledge spillovers when distance increases. In other

words, a negative β implies that if we reduce the distance from j to i while keeping

every other distance constant, the amount of spillovers from j to i will weakly increase.

This theoretical framework bears resemblance to the concept of Market Access pre-

sented in Donaldson and Hornbeck (2016) and Redding and Venables (2004). If we

interpret Knowledge Access as one of the inputs in the production function of knowledge,

then Knowledge Accessi could be interpreted as a measure of Input Market Access. This

measure captures how cheaply firms in location i can access pre-existing knowledge,

where the cost of accessing knowledge depends on distance between i and j. Also,

Knowledge Access is similar to a measure of network centrality. The centrality of each

location i (node) is the weighted sum of distance (edges) to every location, where the

their geographic decay and how they affect the creation of knowledge.
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weight of each location is given by its knowledge stock.

One assumption of the theoretical framework is that New KnowledgeFi is

multiplicative-separable on Knowledge Accessi.
4 To the extent that firm’s productiv-

ity zFi and choice of inputs inputsFi are relatively time invariant, this assumption is

not restrictive.5 However, if for example inputsFi changes with Knowledge Accessi,

then the estimated value of the elasticity would be the sum of the direct effect of

Knowledge Accessi on New KnowledgeFi (ρ) and the indirect effect through changes

in f (·).

The theoretical framework highlights the two parameters to estimate: ρ and β. Empir-

ically, we use travel time as a measure of distance to first estimate β and then conditional

on β we estimate ρ. Changes in travel time due to improvements in commercial avia-

tion allow us to estimate both parameters. First, we use citations between patents as a

proxy for the diffusion of knowledge. We estimate β by relating changes in travel time

between research establishments to changes in citations between them. Second, we use

the stock of patents filed by inventors in each location as proxy for each location’s stock

of knowledge. We construct a measure of knowledge access using the patent stock,

travel times and the value of β. New patents in each location proxy for new knowledge.

Changes in travel time lead to changes in knowledge access which allow us to estimate

ρ.

4The implicit assumption is that ∂log(New KnowledgeFi)
∂log(Knowledge Accessi)

= ∂log( f (zFi , inputsFi))
∂log(Knowledge Accessi)

+ ρ = ρ, meaning that
∂log( f (zFi , inputsFi))

∂log(Knowledge Accessi)
= 0.

5In the empirical analysis we will include a firm-location fixed effect Fi that would absorb time-invariant
characteristics.
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3. Historical context

3.1. Air transport: jet arrival

The jet aircraft was first invented in 1939 for military use, with the German Heinkel

He 178 being the first jet aircraft to fly. The first commercial flight by a jet aircraft was

in 1952 by the British Overseas Airways Corporation (BOAC) from London, UK to

Johannesburg, South Africa with a Havilland Comet 1. Nonetheless, given the amount

of accidents of the Havilland Comet 1 due to metal fatigue, jet commercial aviation did

not truly take off until the Boeing 707 entered commercial service in late 1958. The 24th

of January of 1959 represented a major milestone in the jet era: American Airlines Flight

2 flew with a Boeing 707 jet aircraft from Los Angeles to New York, the first non-stop

transcontinental commercial jet flight.6

In 1951 New York City and Los Angeles were connected with a one-stop flight in 10

hours and 20 minutes. The flight had a forced stop in Chicago and was operated with

the propeller aircraft Douglas DC-6, which had a cruise speed of 500 kmh. By 1956,

New York City and Los Angeles were connected with a non-stop flight in 8 hours and

30 minutes. This was accomplished due to the introduction of the propeller aircraft

Douglas DC-7 which had a cruise speed of 550kmh, and a change in regulation which

increased maximum flight time of a crew from 8 to 10 hours within a 24-hour window.7

In 1961, the route was covered with the jet aircraft Boeing 707 in a non-stop flight in 5

hours 15 minutes, reaching 5 hours 10 minutes in 1966. The Boeing 707 had a cruise

speed of 1000kmh, cutting travel time from New York City to Los Angeles in half
6The reader passionate of aviation history would enjoy reading the following New York Times article

which tells the experience of the first transcontinental jet flight: https://www.nytimes.com/2009/
01/26/nyregion/26american.html

7AA and TWA had transcontinental non-stop propeller flights scheduled since at least 1954. These
flights were scheduled to take 7 hours 55 minutes, just under the maximum flight time allowed by
regulation in domestic flights: regulation impeded pilots from being on duty more than 8 hours
within a 24 hours window. Nonetheless, the propeller aircrafts used in these flights, the Douglas
DC-7 and the Lockheed Super Constellation, overheated their engines due to excessive demand
to cover the route in less than 8 hours. AA fought intensely until the CAB approved a waiver
that allowed non-stop transcontinental flights to take up to 10 hours to accomplish the non-stop
transcontinental flight. See page 16 of the edition of the 21st of June 1954 of the Aviation Week
magazine https://archive.org/details/Aviation_Week_1954-06-21/page/n7/mode/2up
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between 1951 and 1966.

3.2. Air transport: moving people, not goods

During the 1950s and 1960s, air transportation served to transport people but not goods.

Figures 1 and 2 are images (edited for better readability) from annual reports of the

Interstate Commerce Commission of 1967 and 1965 respectively. Figure 1 displays the

amount of passenger-miles for Air, Motor and Rail transportation from 1949 to 1966.8

We observe that, while transport of people by rail decreased and by motor remained

relatively constant, transport of people by air multiplied by 6 in a 16-year period, which

translates to around 12% compound annual growth. In 1966, air transport accounted

for more passenger-miles than both rail and motor transportation together, reflecting

the growing importance of this means of transportation.

Figure 2 shows shipments in ton-miles for the period 1939 to 1964 by means of

transportation: Airways, Pipelines, Inland Waterways, Motor, Railroads. Interestingly,

we observe that air transport of goods, even if it increased, it accounted for less than

0.1% of transport of goods in 1964.

Figure 1: Passenger Miles
Source: Interstate Commerce Commission, Annual Report 1967. Edited by the authors

8Passenger-miles is a standard unit of measurement in transport, where one passenger-mile accounts
for one person traveling one mile. The reasoning is the same for ton-miles, with one ton of goods
traveling one mile.
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Figure 2: Ton Miles
Source: Interstate Commerce Commission, Annual Report 1965. Edited by the authors

3.3. Regulation

As explained in Borenstein and Rose (2014), in the 1930s the airline industry was seen

as suffering from coordination issues, destructive competition and entry. Additionally,

the industry was developing in a context of financial instability and increasing military

concerns post Great Depression. A strong domestic airline industry was perceived as

an interest of national defense. As consequence, the Civil Aeronautics Board (CAB) was

created in 1938 with the objective to promote, encourage and develop civil aeronautics.9

It was empowered to control entry, fares, subsidies and mergers.10 In other words,

the CAB regulated the market by deciding which airlines could fly, in which routes

they could operate, the price that they charged in each route, the structure of subsidies

and merger decisions. The CAB regulated the airline industry in a barely unchanged

manner until it ceased to exist in 1985.

When the CAB was created, it conceived special rights to the existing airlines over

the connections they were operating. The CAB did not permit entry of new airlines on
9The CAB was a federal agency hence, in principle, would not have control over intrastate routes.

Nonetheless, according to Borenstein and Rose (2014) the CAB managed to have some intrastate
markets under its control using legal arguments.

10Safety regulation was under the control of the Federal Aviation Administration.

13



interstate routes and gradually allowed current airlines to expand their routes. The

CAB controlled both the system and each airline’s network. The network was designed

to maintain industry stability and minimize subsidies, leading to a system where each

route was mainly operated by one or two airlines.11 Importantly, Borenstein and Rose

(2014) in pages 68-69 explain that ”the regulatory route award process largely prevented

airlines from reoptimizing their networks to reduce operation costs or improve service as technol-

ogy and travel patterns changed.” As a consequence, any technological improvement such

as increases in aircraft speed, capacity or range would not affect each airline’s flight

network in the short term.

By regulating fares, the CAB explicitly encouraged airlines to adopt new aircraft.

Airlines, when operating an older aircraft, would apply for a fare reduction arguing

that it is needed in order to preserve demand for low quality service. The CAB would

refuse this application, hence airlines would have to adopt new aircraft or risk losing

consumers who would choose another airline which flies newer aircrafts.

4. Air travel data

We construct a new data set of the flight network in the United States during the 1950s

and 1960s. We collected and digitized information of all the flights operated by the

main airlines and obtained the fastest route and travel time between every two airports

in the network.

To construct the flight network we use historical flight schedules of the main airlines

operating in 1950s and 1960s. Figure 3 is a fragment from an example page of the

1961 flight schedule of American Airlines. In the flight schedule we observe in the

center column the name of departure and arrival cities (which we match to airports

using airlines’ historical ticket office geographical location), while the small columns

11Borenstein and Rose (2014) in page 68, based on Caves (1962), expose ”In 1958, for example, twenty-
three of the hundred largest city-pair markets were effectively monopolies; another fifty-seven were effectively
duopolies; and in only two did the three largest carriers have less than a 90 percent share.”
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on the sides depict flights. In the top of the small columns we observe the type of

service provided (first class, coach or both), aircraft operated, days operated (daily if

information is missing) and flight number. The content of the small columns displays

the departure and arrival time (local time, bold numbers represent PM) at each city,

including all intermediate stops.

Figure 3: Fragment of flight schedule American Airlines 1961
The center column displays the name of departure and arrival cities. The small columns on the sides
display flights with departure and arrival time (local time, bold numbers represent PM). The top of the
small columns shows the type of service provided (first class, coach or both), aircraft operated, days
operated (daily if information is missing) and flight number.

We digitize flight schedules for the years 1951, 1956, 1961 and 1966 of six domestic

airlines: American Airlines (AA), Eastern Airlines (EA), United Airlines (UA), Trans

World Airlines (TWA), Braniff International Airways (BN), Northwest Airlines (NW).12

This group of airlines includes the Big 4: AA, EA, UA and TWA, which accounted for

between 69% and 74% of interstate air revenue passenger miles in the US in the years

collected. BN and NW were digitized in order to have a wide geographical coverage,
12The selection of years was done based on data availability and with a criteria to be equally spaced.

Patent data will be used aggregating in 5-year periods.
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while PA provides international flights. Based on C.A.B. (1966), in the years collected,

the six domestic airlines together accounted for between 77% and 81% of interstate air

revenue passenger miles.

In total we have digitized 5,910 flights (unique combinations of flight number-year).

However, flights often have multiple stops. If we count each non-stop part (leg) of these

flights separately, our sample contains 17,469 legs. Our data connects 275 US airports

creating 2,541 unique origin-destination (directional) airport links. Figure 4 displays

the flight network in continental United States pooling all years together. In Appendix

A.3 we show the US flight network by year, around 80% of the non-stop flights remain

year-on-year.

Figure 4: United States flight network 1951-1966

Using departure and arrival time of each flight at each airport, we obtain the fastest

route and corresponding travel time between every two airports in our data. To obtain

the fastest route and travel time we modify the Dijkstra algorithm to account for layover

time in case the fastest route includes connecting flights.

Once the fastest route between every two airports is computed, we match every

airport to 1950 Metropolitan Statistical Areas (MSA) using the shape file from Manson
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et al. (2020). We consider only MSAs in contiguous United States. We use MSAs as

the geographical unit of analysis because they are constructed taking into account

commuting flows. We assume that people in an MSA would use, for each desired route,

the most appropriate airport lying inside or nearby the MSA. We match each airport to

all MSAs for which it lies inside the MSA or is at most 15km away from its boundary.13

176 out of 275 US airports are matched to at least one MSA. Meanwhile, 142 out of

168 MSAs are matched to one or more airports in at least one year, and 108 MSAs are

matched to one or more airports in the four years. We use the sample of 108 MSAs that

are matched to at least one airport in the four years as our baseline travel time data.14

4.1. Descriptive statistics: Air travel

To understand the changes in travel time we will first study travel time of non-stop

flights and then of all routes including connecting flights. Figure 5 displays the non-

stop fastest flight within each MSA pair that was operating in each year. In 1951 the

longest non-stop flight across MSAs was between Chicago and San Francisco using

the Douglas DC-6, covering a distance of 2,960 km in 7 hours 40 minutes. This travel

time was just under 8 hours, the maximum flight time allowed for a crew in a 24-hour

period.15 In 1956, new regulation allowed up to 10 hour flights for transcontinental

flights, the longest non-stop flight between MSAs was New York to San Francisco with

the Douglas DC-7, covering a distance of 4,151 km in 9 hours. Between 1951 and 1956

the main change observed is that longer non-stop routes were possible.

In 1961, the first year in which we have jet aircrafts in the travel time data, there is a

reduction in travel time between MSA-pairs, especially for those far apart from each

other. In 1966, there is a further decrease in travel time due to a widespread adoption

of jet aircrafts in shorter distances. In Appendix Figure 21 we show the jet adoption

13The 15km distance was chosen after inspecting airports near the border that should arguably be
matched, as for example, Atlanta ATL airport.

14In Appendix A.3 we include a table with the 168 MSAs, those connected at least once and those
connected in the four years.

15Honolulu was not concerned by the regulation. Honolulu was connected with non-stop flights to San
Francisco (9 hours 40 minutes), Los Angeles (11 hours) and Portland (12 hours 55 minutes).
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rate by distance for MSAs connected with a non-stop flight. All MSA-pairs more than

3,000km apart connected with a non-stop flight operated at least one jet flight in 1961,

and this expanded to all those more than 2,000km apart in 1966. The speed gain of jets

relative to propeller aircrafts is increasing with the amount of time that the jet can fly

at its cruise speed, arguing in favor of an adoption that is increasing with the distance

between origin and destination.16

Figure 5: Non-stop fastest flights United States MSAs

The change in travel time in non-stop flights is also reflected in the travel time for

connecting flights. Figure 6 shows, relative to 1951, the average and standard deviation

change in travel time for all MSA-pairs, including non-stop and connecting flights.17

Between 1951 and 1956, there is an average reduction in travel time of 9.2% which

16We are currently exploring the differential timing of jet adoption across airlines. Differences in (pre-
existing) route distance and past contractual relationships with aircraft suppliers potentially led to
different adoption rates at each time period. For example, Eastern Airlines’ routes were particularly
shorter than for other airlines. Also, those committed to buy Douglas airplanes (the leader US
commercial aircraft supplier pre-jet era) would have adopted jets later, as Douglas launched jet
airplanes later than Boeing.

17The plot includes only MSA-pairs with travel time in all time periods. The standard deviation for
MSA-pairs less than 250km apart is not displayed because it distorts visualization is large relative to
the ones at other distances.
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is roughly constant for all distances over 500km. Between 1951 and 1961, there is a

reduction in travel time that is increasing with distance. The average decrease in travel

time is of 16.8%, while the reduction is of 29.4% for a distance of more than 2,000km

and 39.2% for a distance of 4,250-4,500km. Between 1951 and 1966, there is an even

stronger decrease in travel time at all distances. The average reduction in travel time

is 28.7% across all distances, 40.8% for a distance of more than 2,000km and 48.4% for

a distance of 4,250-4,500km. The increased adoption of jets for short distance flights

implied that both non-stop flights at short distance and connecting flights at farther

distance had a decrease in travel time.

Figure 6: Change in MSAs travel time

Figure 24 in Appendix A.3 shows that the change in travel time is accompanied by a

reduction of the amount of legs needed to connect two MSAs at every distance. This

reduction is especially marked between 1951 and 1956, and 1961 and 1966. Between

1956 and 1961, we do not observe a big reduction in the amount of legs, implying

that the decrease in travel time observed in Figure 6 between 1956 and 1961 comes

from a source other than the amount of legs. In Appendix Figure 25 we open up the

change in travel time by the way an MSA pair was connected in 1951 and 1966: either
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directly (non-stop flight) or indirectly (connecting flight). We observe that much of the

increase in travel time for MSA pairs less than 250km apart comes from routes that in

1951 were operated non-stop while in 1966 were operated with connecting flights.18

Interestingly, for MSA-pairs more than 2,000km apart travel time reduced on average

42% for those pairs that were connected indirectly in both periods, and 51% for those

that switched from indirect to direct. This fact shows the relevance of improvements in

flight technology even for MSAs that were not directly connected.

It could be the case that a reduction in the amount of legs or an increase in frequency

of flights reduces layover time, which then translates into a reduction of travel time.

In Appendix Figure 27 we compare the change in travel time from 1951 to 1966 with a

counterfactual change in travel time in which we eliminate layover time in both time

periods. We observe that the average change in travel time is stronger at every distance

in the counterfactual scenario without layover time. This implies that the relative

importance of layover time to total travel time within a route increased between 1951

and 1966, so total travel time did not decrease proportionally to the change of in-flight

travel time. In short, layover time attenuated the reduction in travel time.

4.2. Constructing an instrument

In this section we construct an instrumental travel time that is based on the pre-existing

flight routes and the time-varying nationwide roll out of jets. In this way, the instrument

abstracts from the endogenous decisions of two agents: First, regulator’s decision on

the opening/closure of routes. Second, airlines’ decision about to which routes allocate

jet vs propeller airplanes and scheduling (frequency of flights and layover time). The

key source of variation in the instrument is that as the speed of airplanes increases,

18Appendix Figure 26 repeats the exercise discarding layover time in all time periods. By comparing
Figure 25 and Figure 26 we can disentangle the effect of layover time and the change in in-flight time.
For MSA pairs less than 250km that changed from direct to indirect connection, 80% of the increase
in travel time is due to the increase in layover time (which was previously zero as it was a non-stop
flight), and 20% is due to the increase of in-flight time.
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the importance of the number of stops relative to the distance flown changes, and this

provides a decrease in travel time that is larger for MSA-pairs located farther apart. We

first explain the idea and identifying assumptions of the instrument, and then we detail

how it is constructed.

In Borenstein and Rose (2014) it is argued that, due to strict regulation, it was difficult

for airlines to adapt their flight network when technology to fly changed. However,

we may be concerned that the decision of the regulator to grant new routes could be

targeted to specific pairs or correlated with unobservable variables that also affect the

creation and diffusion of knowledge.19 Hence, as the first step in the construction of our

instrument, we fix routes to the ones we observe in 1951. In this way the instrumental

travel time is computed only using non-stop flights present in 1951, and does not

consider appearance or disappearance of non-stop flights in the data. The identifying

assumption is that the network of flight routes in 1951 did not yet include the changes

that would be optimal to operate with jet airplanes. In other words, we require that

the regulator did not change routes already by 1951 in anticipation of the arrival of jet

airplanes.20,21

Airlines could decide on two factors that affect travel time: the type of airplane (jet

vs. propeller) operated in each route and scheduling, which consists on the frequency

of flights and layover time in case of connecting flights.22 We may be concerned that, as

with the regulator, airlines’ decisions could be correlated with unobservables that also

affect the creation and diffusion of knowledge.23 The second step in the construction of

19For example, the regulator could have targeted the opening of new routes between places in order to
boost their economic activity.

20For example, in the instrument there are no non-stop transcontinental routes.
21In our estimations we exploit time variation for identification. Hence, if pre-existing routes affect

the levels at the origin-destination level, this does not drive our identification. However, we may
be concerned that pre-existing routes could affect future growth and not only levels. To address
this concern, in robustness analysis we estimate the elasticity of citations to travel time using only
MSA-pairs that are always indirectly connected. Results are consistent with baseline estimation.

22In 1961, all non-stop flights of more than 3,000km had at least one jet operating within them, while in
1966 it was the case in all non-stop flights of more than 2,000km. Therefore the endogeneity of jet
adoption is a smaller concern for long distance flights.

23For example, airlines may have decided to prioritize the allocation of jets to routes which had a higher
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our instrument is to discard layover time (hence discarding all scheduling decisions) in

all time periods, and assume that in each year all routes are operated with a fictitious

average airplane of the year. Hence, the change in instrumental travel time in a route

is independent of the type of airplane used in the route and it only depends on the

nationwide roll out of jets. The identifying assumption is that no single route had the

power to shift the average speed of the year.

To construct the instrumental travel time we first estimate, separately for each year, a

linear regression of travel time on flight distance using only the fastest non-stop flight

in each origin-destination airport pairs.24 These yearly regressions provide us with the

fictitious average airplane of each year: the intercept gives the take-off and landing

time of the airplane while the slope provides the (inverse) speed. Second, we fit these

regressions to obtain predicted travel time in each non-stop flight and year. Third, for

each year, we compute the fastest travel time using the Dijkstra algorithm. The Dijkstra

algorithm looks for the fastest path using only 1951 non-stop flights, while the travel

time in each non-stop flight in each year is given by the predicted travel time from the

previous step. Layover time is set to zero in all years.

The key source of variation in the instrument is the time varying relative importance

of in-flight travel time relative to the number of stops required to go from one MSA

to another. In shorter flights, the amount of stops have a larger share of the total

instrumental travel time and changes in flight speed have less of an influence. In long

distance flights the flight speed becomes more relevant. As estimated flight speed

more than doubles over the time period, longer flights have a larger reduction in travel

time in the instrument. However, differences in the amount of stops required also

leads to variation in changes of travel time among long distance routes. Long distance

share of business travel, which may be correlated with the diffusion of knowledge.
24The use of a linear regression is motivated by the linearity between travel time and distance displayed

in Figure 5. To estimate these regressions we use all routes appearing in each year. Results of these
estimations presented in Appendix Table 11 show that the implied average flight speed increases
from 412 kmh in 1951, to 453 kmh in 1956, 758 kmh in 1961 and 876 kmh in 1966. On the other hand
the intercept fluctuates, going from 25.3 minutes in 1951 to 29.9 minutes in 1966.
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routes and routes with less amount of stops have a larger reduction of travel time in

the instrument.25

Figure 7 shows the percentage change in observed and instrumental travel time

relative to 1951. We compute the percentage change within each MSA-pair for each

year and then take averages within 250km bins. We observe that the instrumental travel

time follows pretty closely the observed change in travel time in each year. Especially,

it replicates the pattern of a stronger decrease in travel time for MSAs located farther

apart. It is only for MSAs less than 500km apart that the change in the instrumental

travel time departs from the observed change.26 This finding shows that most of the

change in travel time that we observe is due to the change in speed of airplanes, and

that the endogeneity concern is limited for MSAs located far away from each other.

25Using the coefficients in Appendix Table 11 the instrumental travel time for a pair of airports located
300km apart connected non-stop in 1951 and 1966 would be 69.1 minutes and 50.3 minutes in each
respective year, implying a 27.2% reduction in travel time. In the case of a pair of airports located
2,000km apart connected non-stop the instrumental travel time would be 317.3 minutes and 165.9
minutes, implying a 47.7% reduction in travel time. Now lets assume that in both years both pair of
airports had 2 intermediary stops that layed in a straight line in between the origin and destination
airports (such that origin-destination distance and travel distance are the same). In the case with two
stops, the reduction in travel time would have been 8% for the pair of airports 300km apart and 38.6%
for those 2,000km apart.

26We observe an increase in travel time for short distances in 1961 relative to 1951. Given that non-stop
routes are fixed and that for longer distances there is a decrease in travel time, the increase in travel
time in short distances comes from an increase in the value of the intercept relative to the slope in
1961, relative to 1951.
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Figure 7: Instrumental Travel Time between US MSAs.

In Appendix A.3 we present other two counterfactual travel times: one in which we

fix airplanes to be the average airplane of 1951 and allow routes to evolve, and another

in which both the average airplane and routes are varying. These two counterfactuals

together with the one presented in this section allow us to decompose the change in

travel time by the change in routes and the change in speed of airplanes. We obtain that

around 90% of the change in travel time is due to the change in speed of airplanes, while

around 10% of the change is due to the change in the flight routes. Appendix Figure

29 shows that the share is roughly constant for all distances. This finding confirms

that most of the observed changes in travel time are due to improvements in flight

technology.

5. Patent data

We use patent data as our source of innovation information. We construct a dataset

of all patents granted by the United States Patent and Trademark Office (USPTO)

with filing year between 1949 and 1968, which includes for each patent: filing year,
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technology classification, location of the inventors when they applied for the patent,

owner of the patent and citations to other patents also granted in the United States.27

This dataset provides the distribution of patents and citations over the geographic space.

To construct the patent dataset we downloaded from Google Patents all patents

granted by the USPTO with filing year between 1949 and 1968. This dataset contains

patent number, filing year and citations.28,29 Based on the patent number we merge it

with multiple datasets. First, we obtained technology class from the USPTO Master

Classification File and we aggregated them to the six technology categories of Hall et al.

(2001).30 Second, we obtained geographic location of inventors from three datasets:

HistPat (Petralia et al. (2016)) and HistPat International (Petralia (2019)) for patents

published until 1975, Fung Institute (Balsmeier et al. (2018)) for patents published after

1975.31 We match all inventors’ locations to 1950 Metropolitan Statistical Areas (MSAs)

in contiguous United States. To do the match we obtain geographical coordinates from

the GeoNames US Gazetteer file and Open Street Maps, and use the MSAs shape file

from Manson et al. (2020). Third, we obtain ownership of patents from two sources:

Kogan et al. (2017) for patents owned by firms listed in the US stock market and Patstat

(Magerman et al. (2006)) for the remaining unmatched patents.32

27Filing year, also called application year, is the closest date to the date of invention that is present in
the data and it represents the date of the first administrative event in order to obtain a patent. In the
other hand, the publishing (also called granting year) is a later year in which the patent is granted.
The difference between filing and publishing year depends on diverse non-innovation related factors
(as capacity of the patent office to revise applications) and changes over time. Hence filing year is the
date in our data that approximates the best to the date of invention.

28Very few patents had missing information on filing year. We complemented both missing filing year
and citations with the OCR USPTO dataset.

29The patent citation record starts in 1947, year in which the USPTO made it compulsory to have front
page citations of prior art. Gross (2019)

30USPTO Master Classification File: https://www.google.com/googlebooks/uspto-patents-class.
html

31Due to the gap between the filing year and publishing year we also do the matching to patents
published after 1968. Our underlying patent data actually covers a longer time period of filing years,
which we need for example to construct forward and backward citation lags. However, there are
limitations to use the geographic data in filing years 1971-1972. In Appendix B we show that during
filing years 1971-1972 the rate of unmatched patents to inventors’ location increases. This is probably
due to Histpat and Fung data not being a perfect continuation of one another.

32Patent ownership in both datasets comes from the patent text, which is self declared by the patent
applicant. Particularly, Kogan et al. (2017) does not explicitly state if it takes into account firm-
ownership structure to determine the ultimate owner of a patent, neither does Patstat.
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For the descriptives presented below and the posterior analysis we truncate and

aggregate the data in the following way.33 We drop patents that are owned by univer-

sities or government organizations. To count patents that are classified into multiple

technology categories, we do a fractional count by assigning proportionally a part of the

patent to each category. Citations are counted as the multiplication of the technology

weight of the citing and cited patents. We drop patents (and their citations) that have

inventors in multiple MSAs and citations in which the citing owner is the same as the

cited owner.34,35

We aggregate the patent data to 4 time periods of 5 years each, with the center of

each period being the year of travel time data collected. The periods are: 1951 (which

contains the years 1949-1953), 1956 (1954-1958), 1961 (1959-1963) and 1966 (1964-1968).

We consider only patents in MSAs that are matched to an airport in the four periods.36

The final dataset contains 108 MSAs with patents and travel time.

5.1. Descriptive statistics: Patents

This section presents three facts about US patents over our sample period: First, ini-

tially less innovative locations had a higher patenting growth rate. The average yearly

growth rate of locations in the lowest quartile of initial innovativeness was 7.2% while

it was 1.9% for those in the highest quartile. Second, high growth locations were also

primarily in the South and the West of the US. The South and the West grew three times

as fast as the Midwest and the Northeast. Third, the mass of citations shifted towards

longer distances. While the first quartile of citation distance remained relative stable

over the time period, the third quartile increased its distance by 39%. At the same time,
33Details on sample selection are presented in Appendix.
343% of patents have inventors in more than one MSA. Working with multi-MSA patents requires an

assumption on how to compute distance and travel time between the citing and cited patents, as they
do not have a single origin-destination location pair. We hence prefer to abstract from multi-MSA
patents.

35Incentives to self-cite may be different than to cite patents of other owners.
36We drop around 9% of patents that are in MSAs which are not matched to an airport in the four time

periods. Descriptive statistics including those patents are similar to the ones presented here.
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the share of citations at more than 2,000km increased by 30%.

We compute descriptive statistics by technology category. In here we present descrip-

tives of averages across technologies. Technology specific descriptives are included in

Appendix B.

Fact 1: Initially less innovative locations had a higher patenting growth rate

In the period 1951 to 1966 we observe that the highest growth of patenting takes place

in locations that were initially less innovative. The differential growth rate implies a

convergence rate of 5.3% per year.

Figure 8 shows the geographic distribution of patenting in 1951. Darker colors refer

to a higher level of initial innovativeness, which is defined as the amount of patents

filed by inventors in the MSA in 1951.37 We observe that MSAs in the top quartile

of patenting are concentrated in the Northeast (which includes New York) and the

Midwest (which includes Chicago), with few additional MSAs in the West.38,39

Figure 9 shows the geographic distribution of patenting growth in 1951-1966.40 We

observe a striking pattern relative to Figure 8: high growth MSAs were those that were

initially less innovative. High growth happens in initially less innovative locations

in the South and the West but also in the Northeast. We confirm this pattern in Fig-

ure 10, which shows the MSA’s ranking of innovativeness in 1951 and its subsequent

37To compute the level of initial innovativeness we only use patents filed in 1951 (years 1949-1953).
We aggregate patents to the MSA-technology level and then compute the quantile-position of each
MSA in the technology. Lower values of quantile-position refers to lower amount of patents in the
technology (relative to other MSAs). Each MSA has a different value of quantile-position in each of
the 6 technology categories. To obtain the MSA level quantile we take the average quantile across
technologies within the MSA. Finally we classify MSAs into quartiles depending on whether the
average quantile is higher or lower than the thresholds 0.25, 0.50, 0.75.

38In Appendix B we show that the 1951 geographic distribution of patents looks similar across technology
categories.

39The top 5 patenting MSAs in 1951 were: New York City (25% of all patents), Chicago (11%), Los
Angeles (8%), Philadelphia (6%) and Boston (4%).

40We compute the growth rate of patenting in each technology within a MSA and then take the average
across technologies within the MSA.

27



patenting growth rate in 1951-1966. Figure 10 shows that MSAs that were initially more

innovative (lower values in the ranking) are those that saw lower values of subsequent

patenting growth.41,42 We estimate a linear regression with an intercept and a slope,

and find that the slope is positive and statistically different from zero. At the mean,

lowering initial innovativeness by 10 positions in the ranking was associated with a

subsequent 0.42 percentage points higher yearly growth rate of patenting.

Figure 10 presents average growth rates across technologies within a MSA.43 The

average yearly growth rate of MSA-technologies in the lowest quartile of initial in-

novativeness is 7.2% while it is 1.9% in the highest quartile.44 The percentage point

difference between the two growth rates implies that locations in the lowest quartile

converged towards locations in the highest quartile at a speed of 5.3% per year.45

The convergence in patenting across MSAs is consistent with The Postwar Decline in

Concentration, 1945-1990 described in Andrews and Whalley (2021).

41Each dot in Figure 10 is an MSA. To compute the MSA ranking we need to double-rank MSAs. First
we rank all MSAs in each technology. Second we take the across-technology average ranking of
each MSA. Third we rank all MSA’s averages. To compute the MSA’s yearly growth rate we first
take the 1951-1966 growth rate for each technology in the MSA. We then take the average across
technology. Finally we obtain the MSA’s yearly growth rate by computing: yearly growth rate =

(1+ 19 year growth rate)(1/19) − 1 (the 1951 to 1966 period is a 20 year window, we take growth rates
as being from the first year 1949 to the last one 1968, which is 19 year growth).

42In Appendix B we replicate the plot differentiating geographic regions. MSAs that were initially less
innovative and had high subsequent growth were located in all four regions, although they were
primarily located in the South and the West.

43There are multiple ways to compute averages when there are multiple dimensions: MSAs, technologies,
quartiles of initial innovativeness. We obtain a result that goes in the same direction if we compute
the average growth rates across MSAs within a technology and quartile of initial innovativeness, and
then take the average across technologies.

44We first compute the 1951-1966 growth rate (19-year growth rate) for each MSA-technology. We then
take averages across MSAs within a quartile-technology, and after take averages across technologies
within a quartile. Finally, we convert the 19-year growth rate into an average yearly growth rate.

45We note that the aggregate growth of patents is much smaller than the across MSAs unweighted
average, and this is exactly because initially less innovative MSAs grew faster. If we compute the
growth rate in nationwide amount of patents in each of the technologies and then average across
technologies we obtain a yearly growth rate of 1.5%.
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Figure 8: Geography of Patenting 1951 Figure 9: Patent growth 1951-1966

Figure 10: Patent growth rate by initial innovativeness ranking of MSA

Fact 2: The South and the West of the US had a higher patenting growth rate

Figure 9 shows that MSAs located in the South and the West of the US had a higher

patenting growth rate in 1951-1966. We classify MSAs using Census Regions of the

US (Midwest, Northeast, South and West) and aggregate patents within each region-
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technology-year.46 Figures 11 and 12 present averages across technologies within a

region-year. Figure 11 shows that the share of patents filed by inventors located in the

Midwest and the Northeast decreased from 75% in 1951 to 68% in 1966, while the share

of patents filed in the South and the West increased from 25% to 32%. The change in

the shares implies a higher growth rate of patenting in the South and the West relative

to the Midwest and the Northeast.

Figure 12 shows that in the period 1951-1966 the South and the West increased their

amount of patenting by 80%, while the Midwest and the Northeast had a 22% growth.47

Translated into yearly growth rates, the South and the West grew three times as fast as

the Midwest and the Northeast (3.14% vs. 1.05% per year).48

Figure 11: Share of patents by region Figure 12: Patent growth by region

Fact 3: Distance of citations increased

In our analysis we use citations as a proxy for knowledge diffusion. According to Jaffe

et al. (1993) ”a citation of Patent X by Patent Y means that X represents a piece of previously
46In Appendix C we present a map with the four Census Regions. Some MSAs belong to multiple

Census Regions. In here we present descriptive statistics duplicating such MSAs (assigning the MSA
to both Census Regions). Statistics dropping such MSAs are quantitatively similar.

47Growth rates are computed by region-technology and then averaged across technologies within region.
483.14% = 1.80(1/19) × 100, 1.05% = 1.22(1/19) × 100
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existing knowledge upon which Y builds.” (page 580).49 We compute the distance between

the citing inventor and the cited inventor. Figure 13 shows the evolution over time

of the first, second and third quartile of citation distance.50 We observe that 25% of

citations happened between inventors located less than 300km apart throughout our

sample period. For the middle 50% of citations we observe that over time inventors

cited other inventors located farther away. The third quartile of citation distance in-

creased from 1,642km in 1951 to 2,284km in 1961, a 39% increase in the distance.51 In

other words, the mass of citations shifted towards longer distances.

In Figure 14 we present the share of citations by distance range between the citing

and cited inventors.52 The distance cutoffs where chosen in order to have a balanced

share of citations in the initial time period, and considering the changes in travel time

presented in Section 4.1. The share of citations that happen between inventors located

more than 2,000km apart grew from 21.5% in 1951 to 27.9% in 1966. The 6.4 percentage

points increase represents an increase of 30% of the share of citations at more than

2,000km.

49Jaffe et al. (1993) discusses the reasons why to cite and why not to cite. Using a survey of inventors,
Jaffe et al. (2000) find that there is communication among inventors and citations are a ”noisy signal of
the presence of spillovers.”

50We compute distance between MSA centroids.
51As a reference, the distance from New York City NY to other places is: Boston MA 300km, Chicago IL

1,140km, Dallas TX 2,200km, San Francisco CA 4,130km. The quantile 0.10 of was at 0km in every
period, implying that 10% of citations took place within MSA. The quantile 0.90 was between 3,611km
and 3,789km over the sample period.

52While Figure 13 shows how the distance of each quantile changes over time, Figure 14 shows the mass
of citations (and hence the quantile to which belongs) in a certain distance cutoff. For example, in
1951 the share of citations in the 0-300km range was 31.6%, which is equal to saying that the quantile
0.316 in 1951 was 300km.
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Figure 13: Quantiles of citation distance Figure 14: Share of citations by distance

6. Diffusion of knowledge

In this section we show that the reduction in travel time led to an increase in knowledge

diffusion, especially over long distances. In doing so we estimate the parameter β

highlighted in equation (2): the elasticity of knowledge diffusion to travel time.

To perform the analysis we merge the Air Travel and Patent datasets to obtain a final

dataset that contains for each patent owner-location, the amount of patents filed in a

certain 5-year period and technology class, the amount of citations to other patents

with their respective owner identifier, location and technology class, and the travel

time to every location. We label a patent owner a firm and call research establishment a

firm-MSA pair for MSAs in which it has inventors applying for patents. We aggregate

citations to the citing-cited establishment-technology within each period. We assume

that passengers take a return flight, hence we make travel times symmetric.53

53travel timeijt =
travel timeoriginal

ijt +travel timeoriginal
jit

2 where travel timeoriginal
ijt stands for the travel time between

MSA i and j at time period t.
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6.1. Diffusion of knowledge: Baseline estimation

We estimate a gravity equation which relates citations between two establishments-

technologies with their pairwise travel time.54 We estimate the following regression:

citationsFiGjhkt = exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt (3)

where citationsFiGjhkt is the amount of citations from patents filed by the establishment

of firm F in location i, technology h and time period t, to patents filed by establishment

of firm G in location j and technology k. We call Fi the research establishment of firm F

in location i. travel timeijt is the air travel time (in minutes) between location i and j

at time period t. The parameter of interest in the regression is β, which represents the

elasticity of citations to travel time.55 If citations are affected negatively by travel time

we would expect a negative value of β.

Given the panel structure of our data, we can include the fixed effect FEFiGjhk that

absorbs any time invariant citation behavior within the citing establishment-technology

and cited establishment-technology. This fixed effect flexibly controls for persistent re-

lationships within an establishment pair that would lead to relatively more (or less)

citations. That includes characteristics like physical distance, but also pre-existing

commercial relationships between establishments. The fixed effects FEFiht and FEGjkt

control for the time changing general level of citations specific to each establishment

and technology. For example FEFiht controls for the fact that if Fih files more patents

in a given period, it would mechanically make more citations to every establishment.

On the other hand, FEGjkt controls for Gjk filing more patents or higher quality patents

that would receive more citations from every establishment.56

54For explanation and micro foundations of the gravity equation see Head and Mayer (2014) and
references thereof.

55A 1 percent increase in travel time has an effect of β percent increase (or decrease in the case of a
negative β) in citations.

56In the International Trade literature, the parallel of the fixed effects (simplified for exposition) would
be: FEij country-pair fixed effect, FEjt origin-time fixed effect and FEit destination-time fixed effect.
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The inclusion of FEFiGjhk implies that only variation across time within an establishment-

pair is used for identification. By additionally including the fixed effect FEFiht, the

across-time variation is compared only between citing-cited establishment-technology

pairs FiGjhk within a citing establishment-technology Fih in period t. As we also

include FEGjkt, the comparison is done while controlling for the size of the cited

establishment-technology Gjk in period t. Put differently and simplifying slightly, the

identification of β relies on changes in citations and travel time within an establishment-

pair, relative to another establishment-pair with the same citing establishment, condi-

tional on the two cited establishments’ sizes.

Following Silva and Tenreyro (2006), we estimate the gravity equation by Poisson

Pseudo Maximum Likelihood (PPML).57 This estimation methodology has two ad-

vantages over a multiplicative model that is then log-linearized to obtain a log-log

specification. First, it only requires the conditional mean of the dependent variable to be

correctly specified, while the OLS estimation of the log-linearized model would lead to

biased estimates in the presence of heteroskedascity. Second, it allows to include zeros

in the dependent variable, which is especially relevant when using disaggregated data.

One downside of estimating PPML with the fixed effects that we include is that both

coefficients and standard errors have to be corrected due to the incidental parameter

problem (Weidner and Zylkin (2021)). We follow Weidner and Zylkin (2021) to use

split-panel jackknife bias-correction on the coefficients and Dhaene and Jochmans (2015)

to bootstrap standard errors which we also bias-correct with split-panel jackknife.58

Whenever FiGjhk has positive citations in at least one period and missing value in

another, we impute zero citations in the missing period.59 Travel time is set to one

minute whenever i = j.60

57We use the package fixest (Bergé (2018)) in R to estimate high dimensional fixed effects generalized
linear models feglm with Poisson link function.

58Details on the bias correction and bootstrap procedures are provided in Appendix D.
59We do not impute zeros in FiGjhk that are always zero, as those observations would be dropped due

to not being able to identify FEFiGjhk.
60We measure air travel time in minutes. In our sample 13% of citations happen within the same MSA.
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PPML IV PPML
Dep. variable: citatitions

(1) (2) (3) (4)
log(travel time) −0.083∗∗∗ −0.152∗∗∗

(0.019) (0.029)

log(travel time) × 0-300km 0.019 −0.076
(0.036) (0.221)

log(travel time) × 300-1,000km −0.089∗∗∗ −0.134∗∗∗
(0.023) (0.044)

log(travel time) × 1,000-2,000km −0.094∗∗∗ −0.112∗∗
(0.033) (0.047)

log(travel time) × +2,000km −0.169∗∗∗ −0.203∗∗∗
(0.039) (0.043)

Control residuals 1st stage - - Yes Yes
N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to
1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute
zero citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance
bin between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two
step instrumental variables estimation, where log(travel timeijt) is instrumented with log(travel timefix routes

ijt ), the
travel time that would have taken place if routes were fixed to the ones observed in 1951 and in each year routes
were operated with the average airplane of the year. Columns (3) and (4) include as controls residuals of first stage.
Bootstrap standard errors are presented in parentheses. The coefficients and standard errors in columns (1) and (2) are
jackknife bias-corrected. R2 is computed as the squared correlation between observed and fitted values.

Column (1) in Table 1 presents the results of estimating equation (3). The value of the

elasticity of citations to travel time is estimated to be −0.083, statistically significant at

the 1% level. Given the average reduction in travel time of 31.4% in the full estimating

sample, the elasticity implies that citations increased on average 2.6% as consequence

The inclusion of those citations in the estimation increases the amount of observations available to
identify of FEFiht and FEGjkt, and hence keeping them increases the amount of FiGjhkt that remain in
the effective sample to identify β. In order to include them we then need to impute a within-location
travel time. We assume that within-location (air) travel time is not changing across time periods.
Nonetheless, the identification of β is not affected by the value chosen for the within-location (time
invariant) travel time, as β is identified by across time variation. In the appendix we show results
using other values of (time invariant) within MSA travel time and the coefficients remain equal.
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of the reduction in travel time. If we consider the average decrease in travel time across

all MSAs in the baseline travel time data, the implied increase is 2.4%.61

The importance of air transport relative to other means of transport potentially de-

pends on the distance to travel. Also, we observed in Section 4.1 that the improvements

in air travel time depended on the distance to travel, with a difference in jet adoption

for travel distances under and over 2,000km. Taking these two characteristics into

account, we estimate a variation of equation (3) in which we allow the elasticity of

citations to travel time to vary by distance interval between the locations of citing and

cited establishments.62 Column (2) in Table 1 shows the result of this estimation.63 The

estimated value of the elasticity in absolute terms increases with distance, reaching

−0.169 for distances of more than 2,000km. Between 1951 and 1966 the average change

in travel time in the full estimating sample is 47.7% for a distance of more than 2,000km.

The estimated elasticity implies that citations between establishments at more than

2,000km apart increased by 8.1% due to the decrease in travel time. In total citations

at more than 2,000km increased by 21%, implying that the change in travel time can

account for 38.2% of the observed increase. If instead we consider the 40.8% average

reduction in travel time across MSAs in the baseline data, the elasticity implies an

increase in citations of 6.9%, accounting for 32.7% of the total citation increase.

In Appendix B we investigate different heterogeneous effects. We estimate an het-

erogeneous elasticity depending on the level of spatial concentration of the citing

technology and the cited technology, we do not find a statistical difference. We also look

at whether it is older patents or younger patents that get diffused, finding some slight

evidence that it is technologies that take longer time to diffuse that increase more their

diffusion with the reduction in travel time. We study citations to and from government

61These values come from the multiplication of the elasticity of citations to travel time 0.083 and the
average decrease in travel time between 1951 and 1966: 31.4% in the full estimating sample and 28.7%
in the raw data of travel time across MSAs.

62We compute distance between the geographical center of each MSA.
63The share of observations (citations) in each distance interval is: 0-300km 26.1% (28.5%), 300-1,000km

30.7% (28.5%), 1,000-2,000km 19.7% (23.4%), +2,000km 23.4% (19.6%).
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patents, and self citations, on the whole we do not find a different pattern from the

baseline. We also do not find a particular pattern of the elasticity depending on the

citing firm’s size as measured by the amount of patents filed in 1949-1953. Finally, we

estimate the elasticity by citing and cited technology and most of the effect seems to

come when the citing and cited technologies are the same.

There are two types of threats to identification in estimating equation (3): (i) the

potentially targeted changes in travel time, which could be due to the opening of

new routes, the allocation of jets across routes, or changes in scheduling, and (ii) time

changes in other variables at the MSA-pair level which also drive the diffusion of

knowledge and are correlated with the changes in travel time. In the remaining of this

section we address the first type of threat by estimating the model by instrumental

variables. In the following subsection we address the second type of threat by adding

multiple controls. In both cases we show that results do not qualitatively change.

6.2. Diffusion of knowledge: Instrumental variables estimation

As mentioned in Section 4.2, we may be concerned that the timing and allocation of

jets to routes and that the opening/closure of routes were not random. In case there is

an omitted variable that drives both the change in travel time at the MSA-pair level

and the change in citations across establishments within the same MSA-pair, we would

estimate biased coefficients. In order to tackle the endogeneity concern due to omitted

variable we do an instrumental variables estimation using the instrument proposed in

Section 4.2. To implement the instrumental variables estimation we follow a control

function approach described in Wooldridge (2014). We proceed in two steps estimating

the following two equations:

log(travel time)FiGjhkt = λ2 log(instrumental travel timeFiGjhkt)

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(4)
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citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(5)

In a first step we estimate equation (4) and obtain estimated residuals ûFiGjhkt. In a

second step we use the estimated residuals as a regressor in equation (5) which controls

for the endogenous component of travel time. To perform inference we bootstrap

standard errors.64

Columns (3) and (4) of Table 1 show the results of the instrumental variables esti-

mation. If airlines were allocating jet airplanes to routes that would have witnessed a

higher degree of exchange of knowledge even in the absence of jets, then we would

expect the instrumental variables estimate to be smaller in absolute terms relative to

the baseline coefficient. On the other hand, if the regulator targeted the opening of new

routes between places that were in a lower trend of exchange of knowledge, we would

expect the instrumented coefficient to be larger in absolute terms. Column (3) estimates

the elasticity to be -0.152, bigger in absolute value compared to the non-instrumented

estimate. The instrumental variables corrects for a downward bias in absolute terms,

which represents evidence in favor of the regulator targeting the opening of new routes

between places that had a lower degree of exchange of knowledge.65,66

In column (4) of Table 1 we see the coefficients of the instrumental variable estimation

by distance between the citing and cited establishments. We observe the presence of a

bias in the same direction as in column (3), however the magnitude of the bias is smaller

64Appendix D includes details on the bootstrap procedure.
65The incidental parameter problem is potential present also in the instrumental variables estimation (IV

PPML). However, we are not aware of any bias-correction procedure for IV-PPML. Hence, columns
(3) and (4) in Table 1 are not bias-corrected. In column (2) of Table 2 we present the PPML estimation
not bias-corrected.

66The literature on weak instruments for non-linear instrumental variables is scarce. The rule of thumb
of Staiger and Stock (1997) based on the F statistic is constructed using the bias that a weak instrument
generates in a linear second stage (see Staiger and Stock (1997), Stock and Yogo (2005) and Sanderson
and Windmeijer (2016) for testing for weak instruments in linear IV regression). For informative
purposes, in the first stage of the model estimated in column (3) in Table 1 we obtain λ̂2 = 0.95 with
a standard error 0.039 (clustered at the non-directional location pair level, ij is the same location
pair as ji), and a within R2 of 0.38 (the share of residual variation explained by the instrument, after
projecting out fixed effects).
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except for the distance bin 0-300km, which is not precisely estimated. In particular,

at more than 2,000km, the coefficient is relatively similar to the baseline estimation.

Appendix E Tables 18 and 19 present the regression results including coefficients on

the residual controls. According to Wooldridge (2014), there would be evidence of

endogeneity if the parameter λ on controls in equation (5) is estimated to be statistically

different from zero. While the control is statistically significant when using only one

coefficient for all distances, none of them is statistically significant when opening the

coefficient by distance range. In other words, we do not find evidence of endogeneity

at long distances, especially at +2,000km.

The instrument used in the instrumental variables estimation is constructed using

the 1951 flight network. We may be concerned that the 1951 flight network is correlated

with future changes of citations.67 In order to address this concern in Appendix E we

estimate equation (3) by restricting the sample to establishments in MSA-pairs that are

always indirectly connected. Results go in the same direction.

6.3. Diffusion of knowledge: Robustness

We may be concerned that there are other variables that could drive the diffusion of

knowledge and at the same time be correlated with the change in travel time. In order

to bias the coefficients, such omitted variables should be time-changing at the origin-

destination MSA pair and be systematically correlated with the change in MSA-pair

air travel time.68 We consider three potential variables that could bias our estimates:

improvements in highways, improvements in telephone communication and changes

in flight ticket prices. In Table 2 we show the results controlling for this variables

separately, while in Appendix E we include them simultaneously. Estimates are robust

to including these controls.

67We include a establishment pair fixed effect in the regressions, so a potential correlation between the
1951 flight network and the level of citations between research establishments does not affect our
estimation.

68Variables that are not time changing or that are time changing at the MSA or establishment level do
not represent a threat to identification, as they are flexibly controlled for with the fixed effects.
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Columns (1) and (2) in Table 2 present the elasticity of citations to travel time by

distance bin. In column (1) the elasticity is bias-corrected while in column (2) it is not.

We observe that not doing the bias correction does not qualitatively affect the results.

Columns (3) to (6) include the additional controls and should be compared to column

(2).69

First, in 1947 the Congress published the official plan for the Interstate Highway

System, a nationwide infrastructure plan to improve existing highways and build new

ones (see Baum-Snow (2007), Michaels (2008), Jaworski and Kitchens (2019) and Herzog

(2021)). In case the change in travel time by air is correlated with the change in travel

time by highway, we would have an omitted variable bias if we include only one of

them in the estimation. Taylor Jaworski and Carl Kitchens have graciously shared with

us data on county-to-county highway travel time and travel costs for 1950, 1960 and

1970, which we converted to MSA-to-MSA and linearly interpolated to convert to the

same years of our air travel data. Hence we have a MSA-to-MSA time-varying measure

of highway travel time which we include as control.70

Second, other means of communication like telephone lines may have expanded

or changed their price during the period of analysis. Haines et al. (2010) contains

information on the share of households within each city with telephone lines in 1960.

We aggregate the variable to the MSA level. For each MSA-pair, we take the log of the

mean share of households with telephone lines.71 To include the variable as control

we interact it with a time dummy to make the measure time variant. The assumption

69The jackknife bias-correction due to the incidental parameter problem is computationally intensive.
Due to the computational burden and given that the bias correction does not substantially change
the results in the baseline analysis, we have not bias-corrected estimations of robustness analysis in
columns (2) to (6) of Table 2

70In Appendix E we show the correlation of MSA-to-MSA change in air travel time and highway travel
time.

71Data from the 1962 City Data Book which comes from the US Bureau of the Census. log(mean
telephone shareij = log((telephone sharei+telephone sharej)/2). Using as control the multiplied share
= telephone sharei × telephone sharej gives similar results.
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behind the interaction is that, if telephone lines expanded or changed their price over

the time period, this time-change specific to each year was proportional to the 1960 log

mean share of the MSA-pair.

Third, during the period of analysis ticket prices were set by the Civil Aeronautics

Board, so airlines could not set prices of their own tickets. Some airlines included a sam-

ple of prices in the last page of their booklet of flight schedules, which we digitized. In

Appendix E we document multiple facts about prices. The relevant fact for this section

is that during 1962-1963 we observe a drop in prices of around 20% for routes of more

than 1,000km distance. We may be concerned that the change in flow of knowledge is

actually consequence of the change in prices, which happens to be correlated with the

change in travel time. Given that we do not have ticket prices for each route and year,

we use an estimated route price which is time varying. We obtain estimated prices by

using the sample of prices that we digitized and fitting, for each year, price on a third

degree polynomial of distance between origin and destination. We use log of estimated

prices as control.72

Column (3) to (5) of Table 2 include the described controls. All of the coefficients are

in the ball park of the baseline coefficients in both columns (1) and (2).73

Fourth, we control for a time varying effect of distance on citations. We may believe

that other variables may have an effect on the diffusion of knowledge, and those vari-

ables are related to the distance between the citing and cited establishments. In column

(6) we include as control log(distance) interacted with a time dummy. We observe that

the coefficients reduce in magnitude, potentially due to the fact that the change in

travel time is also correlated with distance, hence controlling for a time-varying effect

of distance absorbs part of the effect. In spite of that, the coefficient for distance of more

72Standard errors presented are not adjusted by the fact that the regression includes a predicted regressor
as control variable.

73Assuming the covariance across coefficients of different regressions is zero, none of the coefficients is
statistically different from the baseline coefficients either in column (1) or (2).
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than 2,000km remains statistically significant at the 5% level. This result highlights

the importance of the origin-destination time varying travel time data when studying

the impact of face to face interactions, pointing that travel time and distance are not

equivalent measures. This result differentiates our analysis from the one of Feyrer

(2019) who uses two types of time-invariant distance (sea distance and geographical

distance) interacted with time dummies to study changes in international trade.

In Appendix E we present additional robustness analysis. We may be concerned

that the change in diffusion of knowledge is only consequence of the change in the

geographic location of innovation. Hence, we re-estimate equation (3) with different

samples: first, using only citing establishments that were present in 1949-1953, and

second using only citing and cited establishments that were present in 1949-1953. We

find that across sub-samples the coefficient at more than 2,000km remains stable across

samples and statistically significant at the 1% level. Next, we estimate a variation of

equation (3) in the form of log-log and obtain results that are in the ballpark of the

baseline estimation.74

7. Creation of knowledge

In this section we interpret the results on increased diffusion of knowledge through

the lens of a model of knowledge spillovers. We show that the reduction in travel

time to innovative locations led to an increase in knowledge creation. The effect on

the creation of knowledge was stronger in initially less innovative locations, leading

to convesrgence across locations in terms of innovation. Additionally, the reduction

in travel time contributed to a change in the geographic distribution of knowledge

creation, increasing the relative importance of locations in the South and the West of

the United States.

74See Appendix E Table 20. Elasticity at +2.000km is estimated to be -0.161 by OLS.
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PPML
bias-corrected

PPML
not bias-corrected

Dep. variable: citations citationsFiGjhkt
(1) (2) (3) (4) (5) (6)

log(travel time) × 0-300km 0.019 0.021 0.023 0.0198 0.025 0.032
(0.036) (0.039) (0.039) (0.039) (0.038) (0.040)

log(travel time) × 300-1,000km −0.089∗∗∗ −0.099∗∗∗ −0.096∗∗∗ −0.094∗∗∗ −0.102∗∗∗ −0.075∗∗
(0.023) (0.027) (0.028) (0.027) (0.027) (0.030)

log(travel time) × 1,000-2,000km −0.094∗∗∗ −0.093∗∗ −0.089∗∗ −0.071∗ −0.104∗∗ −0.040
(0.033) (0.042) (0.044) (0.042) (0.042) (0.052)

log(travel time) × +2,000km −0.169∗∗∗ −0.185∗∗∗ −0.180∗∗∗ −0.172∗∗∗ −0.196∗∗∗ −0.124∗∗
(0.039) (0.049) (0.050) (0.050) (0.049) (0.059)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88 0.88 0.88

Controls:
log(highway time) - - Yes - - -
log(telephone share) × time - - - Yes - -
log(price) - - - - Yes -
log(distance) × time - - - - - Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 2: Robustness: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) +

∑d αd 1{distanceij ∈ d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location
i, technology h and time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between
location i and j at time period t, and it is set to 1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Column
(1) presents jackknife bias-corrected coefficients and bias-corrected bootstrap standard errors. Column (2) repeats column (1) without bias-correction. Relative to
(2), columns (3) through (6) contain additional controls. Column (3) controls for log highway time between i and j at period t. Column (4) controls for the log of the
mean share of households with telephone line in 1960 in ij pair interacted with a time dummy. Column (5) controls for log flight ticket price between i and j at
period t. Column (6) controls for log distance ij interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another,
we attribute zero citations in the missing period. Columns (2) through (6) present standard errors clustered at the non-directional location in parentheses (ij is the
same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.



We construct a measure of Knowledge Access by adapting equation (2) to an empirical

set up with multiple technology categories and time periods. The measure of Knowledge

Access (KAiht) shows how easy it is in time period t for research establishments in

location i and technology h to access knowledge created in other locations. We compute

Knowledge Access as follows:

KAiht = ∑
k

ωhk ∑
j, j ̸=i

Patent stockjk,t=1953 × travel time
β

ijt (6)

where, from right to left, travel timeβ
ijt is the travel time between locations i and j at

time period t, to the power of the elasticity of diffusion of knowledge to travel time.

Patent stockjk,t=1953 is the discounted sum of patents produced in location j and tech-

nology k between 1941 and 1953.75,76 ωhk is the share of citations of technology h that go

to technology k at the aggregate level in 1949-1953, similar to an input-output weight.77

Then, KAiht is a weighted sum of the patent stock in each other location and technology,

where the weights are how easy it is to access that patent stock (travel timeβ
ijt) multi-

plied by how relevant that knowledge is (ωhk).

In order to reduce concerns of potential endogeneity of accessing knowledge and

creating knowledge, we exclude the patent stock in the location itself from the sum (we

only use j ̸= i).78

The measure of Knowledge Access contains across-time variation within a location-

75Patent stockjk,t=1953 = ∑y∈[1941,1953] Patentsjky × (1−depreciation rate)1953−y . We use a depreciation
rate of 5%, which is in the range of average depreciation rates of R&D found by De Rassenfosse and
Jaffe (2017).

76Location j and technology k would be the source location and technology, while i and h would be the
destination location and technology.

77ωhk = citationshk,t=[1949,1953]/citationsh,t=[1949,1953] is included to weight each source technology cate-
gory k by how important it is for the destination technology category h.

78The theory makes no distinction on whether the knowledge stock is in i or j, so in principle we
would like to include the patent stock of i in the knowledge access of i. However, this could lead to
econometric problems. First, we do not have exogenous variation of travel time within i. Second, if
knowledge creation in i is a persistent process, by including the patent stock of i we would introduce
a mechanical relationship between knowledge access and knowledge creation. Hence, our baseline
measure of knowledge access of i does not consider the patent stock of i. This is similar to what
Donaldson and Hornbeck (2016) in the case of the empirical approximation of their Market Access
measure. In Appendix E we show that the inclusion of i’s patent stock does not affect the results.
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technology ih, and cross-sectional variation across technologies h within a location i.

The across-time variation is only due to the change in travel time between locations,

every other component of the measure is fixed to its 1949-1953 level. The cross-sectional

variation comes from a distribution of Patent stockjk,t=1953 within source technologies

k that is not uniform across source locations j, and from the input-output weights

ωhk. The joint across-time and cross-sectional variation means that if travel time for ij

reduces, there will be a differential change in Knowledge Access across technologies h

within location i which depends on the initial patent stock and input-output weights.

The degree with which changes in travel time are reflected in access to knowledge

depend on how important travel time is to get knowledge to diffuse, which is the elastic-

ity of knowledge diffusion to travel time that we estimated in Section 6. As the baseline

we use β = 0.185, which is the elasticity of citations to travel time at more than 2,000

km not bias corrected. In robustness we use distance-specific β and in Appendix E we

do sensitivity analysis of the results to changing the value of β.

The measure of Knowledge Access allows us to translate changes in travel time between

pairs of MSAs into a single location-technology specific characteristic, and to represent

it on the same scale as patent growth in Figure 9. Figure 15 depicts the time change in

log Knowledge Access from 1951 to 1966, averaged across technologies within each MSA.

Darker colors represent higher growth in Knowledge Access. As with patent growth, we

observe that MSAs that had the strongest growth are generally located in the South

and the West of the United States, far from the knowledge centers of New York and

Chicago. The reduction in travel time was larger between locations far apart, implying

that locations which happened to be far from knowledge centers increased relatively

more their Knowledge Access.
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Figure 15: Change in log Knowledge Access 1951 - 1966

7.1. Creation of knowledge: Baseline estimation

With the measure of Knowledge Access we then adapt equation (1) to estimate:

PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht (7)

where PatentsFiht are patents applied by establishment of firm F in location i and

technology h at time period t. The measure of knowledge access KAiht is at the iht

location-technology-time level, meaning that all establishments within an iht share the

same level of knowledge access. The parameter of interest ρ is the elasticity of (the

creation of new) patents to knowledge access. In the presence of knowledge spillovers

as suggested in Section 2, we would expect ρ to be positive and statistically significant.

The fixed effect FEFih absorbs time invariant characteristics at the firm-location-

technology level, as for example the productivity of the establishment-technology. This

fixed effect is more fine grained than just a location-technology, which would absorb

the comparative advantage of a location in a certain technology. The fixed effect FEit

absorbs characteristics that are time variant at the location level. For example, changes
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in R&D subsidies that are location specific and common across all technologies would

be absorbed by this fixed effect. Also, better flight connectivity could spur economic

activity as shown in Campante and Yanagizawa-Drott (2017), leading to an increase

in patenting activity in the location. If that increase is general across technologies

within the location, then FEit would absorb it. Finally, the fixed effect FEht absorbs

characteristics that are time variant at the technology level. If technologies had different

time-trends at the national level, then the fixed effect would control for these trends in

a flexible way.

The inclusion of FEFih implies that only across-time variation within an establishment-

technology is used to identify ρ. The inclusion of FEit implies that only variation across-

technologies within a location-time is exploited, so across-time variation is compared

across establishments within a location, and not across locations. The inclusion of FEht

implies that the identifying across-time variation is conditional on aggregate trends of

the technology. In short, identification of ρ relies on across-time changes in the amount

of patents and knowledge access of an establishment, relative to other establishments

in the same location, conditional on aggregate technological trends.

Column (1) in Table 3 shows the result of estimating equation (7). The elasticity of

patents to knowledge access is estimated to be 10.14, significant at the one percent

level. The average change in knowledge access at the location-technology level79 is

9%, implying that on average the change in travel time predicts a 3.5% average yearly

growth rate of patents.80 The observed average yearly growth rate of new patents at

the location-technology is 4.4%.81 Comparing the predicted and observed growth rates,

79Due to entry, we cannot compute the growth rate at the establishment-technology level for 70%
of establishment-technology, given that they had 0 patents in the initial time period. In the case
of location-technology, 5% did not have patents in the initial period. We the prefer to interpret
coefficients using location-technology growth rates, which we compute using the remaining 95% of
location-technologies that had positive patents in the initial time period.

80The elasticity of 10.14 predicts an increase of 91.3% over the time period of 19 years (10.14 × 0.09 =
0.913), which translates into a 3.5% average yearly growth rate ((1+0.913)1/19-1≈0.035).

81From the first time period (1949-1953) to the last time period (1964-1968) we observe an average growth
rate of new patents of 127%. We obtain 0.044 ≈ ((1 + 1.27)1/19 − 1
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PPML IV PPML IV PPML
centered

Dependent Variable: Patents
(1) (2) (3) (4) (5) (6)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 11.24∗ 10.26 9.86∗ 7.01
(3.66) (3.69) (6.35) (6.38) (5.73) (5.83)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.32∗∗∗ 3.99∗∗
(0.58) (0.66) (1.25)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 4.21∗∗∗ 7.57∗∗∗
(0.90) (0.84) (2.30)

log(knowledge access) × 1st quartile 5.00∗∗∗ 5.77∗∗∗ 9.03∗∗∗
(1.30) (1.11) (2.46)

R2 0.85 0.85 0.85 0.85 0.85 0.85
N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 3: Effect of knowledge access on patents, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t.
Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using
patents filed in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is used
as reference category. Columns (3) and (4) show the result of two step instrumental variables estimation, where KAiht

is instrumented with K̃Aiht, knowledge access computed using the counterfactual travel time that would have taken
place if routes were fixed to the ones in 1951 and each year routes were operated at the average aggregate flying speed
of the year. Columns (5) and (6) use a centered version of K̃Aiht following Borusyak and Hull (2023) by subtracting the
expected instrument which is computed using random flight networks. Standard errors are presented in parentheses.
Column (1) and (2) present clustered at the location-technology ih. Column (3) and (4) present bootstrap standard
errors. R2 is computed as the squared correlation between observed and fitted values.
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the improvement in air travel time has the power to account for 79.5% of the observed

average yearly patent growth rate.82

We aggregate predicted changes in patent growth at the Census Region level. The

change in travel time predicts a yearly growth rate 0.74 percentage points higher in the

South and the West relative to the Midwest and Northeast. In the data we observe 2.1

percentage points difference in the growth rate, implying that the change in travel time

can account for 35% of the observed differential growth rate.83

Section 5.1 showed that in the data, initially less innovative MSAs had a larger

growth rate of patenting. In column (2) in Table 3 we investigate if the increase in

knowledge access had an heterogeneous effect on the amount of new patents created

depending on the initial innovativeness of the location i in technology h. We compute

the quartile of innovativeness of location i in technology h in the time period 1949-1953

and interact it with log(KAiht).84 We use as reference category the highest quartile of

initial innovativeness, hence the coefficient on log(KAiht) without interaction is the

elasticity for the highest quartile. Coefficients on other quartiles should be interpreted

relative to the highest quartile.

We find that the coefficients on lower quartiles of initial innovativeness are positive

and statistically different from the coefficient in the highest quartile. Thus, knowledge

access had a greater effect on patenting for establishments that were located in initially

8279.5 = 3.5/4.4 × 100
83Using the coefficient of column (1) in Table 3, we compute the MSA-technology predicted level of

patents for 1966 and aggregate it at the Census region - technology level. Then, we compute yearly
growth rates within each region-technology and take averages across technologies. Next, we take the
average between S and W, and MW and NE, and finally compute the differential predicted growth. If
we use the quartile-specific coefficients of column (2) in Table 3 we obtain a predicted differential
growth rate of 0.86 percentage points, which implies that the change in travel time can account for
41% of the observed differential growth rate.

84We use the quartiles of innovativeness defined in section 5.1, computed using the amount of patents
of location i in technology h filed in the time period 1949-1953. Each location i has (potentially)
a different value quartile in each technology h. The 1st quartile refers to the 25% initially least
innovative MSAs in technology h.

49



less innovative locations.85 Given the difference in the coefficients, the increase in

knowledge access predicts an average yearly growth of new patents of 4.5% for the ini-

tially lowest quartile of innovativeness, while it predicts 3.4% for the highest quartile.86

The change in knowledge access predicts differential growth rate of 1.1 percentage

points. In the data we observe that the average yearly growth rate of patents in the

lowest quartile is 5.3 percentage points higher than in the highest quartile. Comparing

the predicted and observed differential growth rates, the improvement in knowledge

access as consequence of the reduction in travel time explains 21% of the difference in

growth rates of new patents between locations in the lowest and highest quartile of

innovativeness.87

In Appendix Table 23 we present results estimating equation 7 weighting patents by

quality using the breakthroughness level computed by Kelly et al. (2021).88 We find a

larger coefficient in magnitude, providing evidence that the results are not driven by

the granting of lower quality patents. Results also go in the same direction with the

quality-weighted knowledge access measure.

7.2. Creation of knowledge: Instrumental variables estimation

As in Section 6, we may be concerned that decisions of the regulator or airlines which

affect travel time are endogenous to the diffusion of knowledge and consequently to

knowledge access. Therefore, we construct an instrument for knowledge access in

85A given percentage change in knowledge access led to a stronger increase in patenting in initially less
innovative locations.

86The change in knowledge access for the lowest quartile is on average 9.1%, which multiplied by
the coefficient 14.36 (obtained by doing 9.36+5.00=14.36) gives a predicted growth of 131% over 19
years. Translated into average yearly growth it is 4.5% = [(1 + 1.31)(1/19) − 1] × 100. For the highest
quartile, knowledge access changed on average 9.5%, which multiplied by the coefficient 9.36 predicts
89% growth rate, which is 3.4% yearly growth rate.

8721% ≈ 1.2/5.1 × 100
88We use the patent’s 5-year percentile of breakthroughness after demeaning by year fixed effects

computed by Kelly et al. (2021). The measure of breakthroughness is computed by comparing the
patent text of the focal patent with previous and future patents in a 5-year window to find whether
the patent introduces new concepts that were not common before but became common after, making
a breakthrough. Using the measure computed with 10-year data give similar results. Importantly, the
computation of the measure does not use citation data.
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which instead of using observed travel time, we use the fictitious travel time presented

in section 4.2 in which routes are fixed to the ones in 1951 and each route is operated

with the average airplane of the year:

K̃Aiht = ∑
k

ωhk ∑
j, j ̸=i

Patent stockjk,t=1953 × (instrumental travel timeijt)
β (8)

Recently, Borusyak and Hull (2023) have pointed out that when multiple sources of

variation are combined to define treatment according to a known formula, treatment ex-

posure can be non-random. Failing to account for this difference in expected treatment

can create omitted variable bias. Our instrument combines cross-sectional variation,

the 1951 flight network and the spatial distribution of the knowledge stock in the early

1950s, with variation across time, the national rollout of jets. A MSA like San Francisco

that is connected to knowledge hubs like Chicago via non-stop, long-distance flights

will benefit greatly from the increase in flight speeds brought about by the jet engine

and see a large increase in knowledge access. On the other hand, a MSA like Boston,

already close to major innovation hubs like New York, benefits less.

While the initial flight network thus matters greatly for the variation captured by

the instrument, this variation is in part driven by geography. Considering all possible

connections, MSAs located far away from every other location have more possible

long-distance connections and are thus more prone to benefit from faster airplanes. It

is this non-random exposure to the national rollout of jets that might create omitted

variable bias if not accounted for. Following Borusyak and Hull (2023), we recenter

our instrument by subtracting the expected value of the instrument. To construct the

expected instrument we draw a set of random counterfactual networks, compute travel

time and the value of a counterfactual instrumental knowledge access under each of the

networks. Counterfactual networks contain the underlying observed geography and

hence locations farther apart from innovation centers see a larger increase in knowledge

access even in random networks. We then take the average across counterfactual
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networks to obtain the expected instrument.89 By recentering the instrument we purge

it from the non-randomness that might be introduced by geography. The recentered

instrument is:

log(K̃Aiht)centered = log(K̃Aiht)− E[log(K̃Aiht)] (9)

We implement the instrumental variables estimation by control function as in Sec-

tion 6. Results are presented in Table 3. Columns (3) and (4) show results using the

non-centered instrument while columns (5) and (6) use the centered version. The

coefficients do not show an important change and the convergence prediction obtained

using non-instrumented PPML remains valid.90,91

Figure 16 shows in the left panel the patent growth observed in the data (it replicates

Figure 9), while in the right panel it is the predicted patent growth. We compute the

prediction using the observed change in travel time and quartile specific elasticities of

column (2) in Table 3. Similarly to what is observed in the data, the change in travel

time predicts a larger patenting growth rate in the South and the West relative to the

Northeast and Midwest.

The result in column (2) implies that a given change in Knowledge Access had a

stronger effect on patenting growth in less innovative locations. In other words, knowl-

edge spillovers as an externality had a more predominant role in the production of

knowledge in locations that initially produced relatively fewer patents. Theoretically,

this result implies that the parameter ρ in equation (1) varies depending on the level

of previous production of knowledge of location i. Empirically the implication is that

a given increase in knowledge spillovers leads to innovation convergence across lo-

89Details on the construction of the centered instrument are presented in Appendix Section E.2.2.
90The first stage of the model estimated in column (3) of Table 3 gives a λ̂2 = 1.01 with standard error

0.03 (clustered at the location-technology level ih), and a within R2 of 0.53.
91Using non-centered IV estimates, the predicted yearly patent growth rate in the lowest quartile is 4.9%

while it is 3.7% in the highest quartile. The predicted differential growth rate is then 1.2 percentage
points, meaning that the change in knowledge access can explain (1.2/5.3) × 100 ≈ 23% of the
observed differential growth rate.
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Figure 16: Observed vs. predicted patent growth 1951 - 1966

cations. As seen in section 5.1, during 1949-1968 we observe innovation-convergence

across locations and that is exactly what the estimated coefficients predict following a

reduction in travel time.

In order to understand the convergence result and compare it with other findings

in the literature it is important to remember that commercial airplanes during 1950s

and 1960s were a means of transportation mainly for people. On the other hand,

other transportation improvements as those in water transport, railroads or highways

also contain another ingredient: they were used to carry goods. Hence, other means

of transportation have a simultaneous impact on face to face interactions and trade.

Pascali (2017) finds that the introduction of the steam engine vessels in the second

half of the 19th century had an impact on international trade that led to economic

divergence between countries. Faber (2014) finds that the expansion of the highway

system in China led to a reduction of GDP growth in peripheral counties, with evidence

suggesting a trade channel due to reduction in trade costs. In our setup, the introduction

of jet airplanes represented a big shock to the mobility of people while not affecting

significantly the transport of merchandise. Therefore, studying the introduction of

jet airplanes allows us to focus on improved face to face interactions, while the trade

channel would be a second order effect.
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7.3. Creation of knowledge: Robustness

In this section we show that the effect of Knowledge Access on the creation of new patents

and the convergence effect remains after including different controls. Table 4 shows the

results.

Jaworski and Kitchens (2019) show that improvements in the Interstate Highway

System led to local increases in income through an increased market access. In our set

up, if the effect of market access affects innovation in the same way across technologies,

then it would be absorbed by the MSA-time fixed effect FEit in equation (7). However,

if the effect of market access on innovation varies across technologies, then it would be

a confounder. To control for this potential confounder, we compute market access by

highway and interact it with a technology dummy. We compute market access as:

Market Accessit = ∑
j

Populationj,t=1950 × τθ
ijt (10)

where Populationj,t=1950 is population in MSA j in 1950, τijt are the shipping costs

provided in the data of Taylor Jaworski and Carl Kitchens computed using each year’s

highway driving distance, highway travel time, petrol cost and truck driver’s wage. θ

is the elasticity of trade to trade costs which we set to -8.28, the preferred value of Eaton

and Kortum (2002) and in the range of many other estimates in the literature (Head and

Mayer (2014), Caliendo and Parro (2015), Donaldson and Hornbeck (2016)). Columns

(3) and (4) of Table 4 show the results, we do not observe an important difference with

the baseline estimates.

Campante and Yanagizawa-Drott (2017) shows that better connectivity by airplane

leads to an increase in economic activity as measured by satellite-measured night light.

Söderlund (2020) shows that an increase in business travel in the late 1980s and early

1990s led to an increase in trade between countries. In a similar way to knowledge

access, we could think that better connectivity by airplane could have led to an increase

in market access due to a reduction in information frictions, with goods being shipped
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by land. Similarly to highway market access, if the effect of market access by airplane

is common to all technology categories then it would be absorbed by the MSA-time

fixed effect FEit. In order to account for a technology-specific effect, we construct

a measure of airplane market access and interact it with a technology dummy. The

measure of airplane market access is similar to equation (10) where τ is the travel time

by airplane and θ is set to -1,22, the elasticity of trade to travel time from Söderlund

(2020). The results are shown in columns (5) and (6) of Table 4. While the coefficients in

all quartiles are reduced, the estimated value of ρ is positive and significant and the

result on convergence remains.

Potential contemporaneous improvements in other means of communication, like

telephones, could have spurred the creation of new patents. In columns (7) and (8)

we include the log of the MSA’s share of households with telephones in 1960 and

double-interact it with a technology dummy and a time dummy. The results remain

invariant with respect to the baseline.

Another potential explanation for the increase of patenting could be that better con-

nectivity decreased technology-specific financial frictions. The potential reduction in

financial frictions, rather than a confounder, would be a mechanism through which

airplanes increased innovation. However, according to Jayaratne and Strahan (1996)

during 1950s and 1960s interstate lending and bank branching were limited. Prior to

the 1970s, banks and holdings were restricted in their geographic expansion within and

across state borders. Additionally, the Douglas Amendment to the Bank Holding Com-

pany Act prevented holding companies from acquiring banks in other states. Therefore,

it is unlikely that interstate bank financing would be a driving force. Nonetheless, if

other sector-specific modes of financing like venture capital were active, they could be

driving the results. In Appendix E we construct multiple measures of access to capital

by using market capitalization of patenting firms listed in the stock market. The results

present suggestive evidence that access to capital is not driving the results.
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PPML
Dependent Variable: Patents

(1) (2) (3) (4) (5) (6) (7) (8)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 9.28∗∗ 8.23∗∗ 6.22∗ 5.84 10.34∗∗∗ 9.25∗∗∗
(3.66) (3.69) (3.68) (3.69) (3.58) (3.60) (3.44) (3.43)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.16∗∗∗ 2.06∗∗∗ 2.23∗∗∗
(0.58) (0.57) (0.59) (0.57)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 3.89∗∗∗ 3.75∗∗∗ 3.93∗∗∗
(0.90) (0.89) (0.88) (0.91)

log(knowledge access) × 1st quartile 5.00∗∗∗ 5.13∗∗∗ 5.08∗∗∗ 5.18∗∗∗
(1.30) (1.30) (1.29) (1.32)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Controls:
log(Highway market access) × technology - - Yes Yes - - - -
log(Airplane market access) × technology - - - - Yes Yes - -
log(Telephone share) × technology × time - - - - - - Yes Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 4: Elasticity of new patents to knowledge access, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for
patents filed by establishment of firm F in location i, technology h and time period t. KAiht is knowledge access of establishments in location i technology h and
time period t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using patents in 1949-1953. Higher
quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Relative to columns (1) and (2), columns (3) and (4) control
for technology specific effect of log(highway market access), columns (5) and (6) control for technology specific effect of log(airplane market access), columns (7)
and (8) control for technology and time specific effect of log(telephone share). Standard errors clustered at the location-technology ih are presented in parentheses.
R2 is computed as the squared correlation between observed and fitted values.



Finally, in Appendix E we include additional robustness checks. We compute differ-

ent versions of Knowledge Access: we use distance-specific β from section 6, we consider

the patent stock only of locations j far from i, we do sensitivity analysis using different

values of β. Also, we re estimate the effects by quartile of initial innovativeness using

patents per capita. Last, we re-do the baseline regression using OLS estimation. Re-

sults go in the same direction: an increase in knowledge access leads to an increase in

patenting and the effect is stronger in initially less innovative locations.

8. Conclusion

This paper studies how frictions to the mobility of people affect the geography of

innovation in the context of the early Jet Age in the United States. With newly digitized

data on airlines’ flight schedules, we construct a dataset of the flight network in the

United States during the 1950s and 1960s. We document the large reduction in air

travel time that jet airplanes brought about: around 5 to 6 hours, a 50% reduction,

for coast-to-coast travel. Combined with patent data, we find that the reduction in

travel time increased knowledge diffusion, especially between research establishments

located far apart. The increase in access to knowledge created long-distance spillovers

and led to the production of new knowledge.

Our results point to jet airplanes as an important driver behind major changes in the

geography of innovation in the United States post World War II: a catching up of the

South and the West with the Northeast and the Midwest, and initially less innovative

MSAs reducing the gap with more innovative ones.

The results provide policy-relevant insights regarding the impact of passenger trans-

port infrastructure on the emergence of technology clusters. Large R&D policies, like

the recent CHIPS and Science Act, frequently include a place-based component to

increase technology capacity in regions that lag behind (Gruber and Johnson (2019),

Gross and Sampat (2023)). Our results show that connectivity to existing clusters can
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lead to an increase of local innovation and act as a convergence force between regions.
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A. Appendix: Travel Time Data

A.1. Data Construction

We construct a dataset of travel times by plane between US MSAs for the years 1951,

1956, 1961, 1966. We get information of direct flights from airline flight schedules and

feed this information into an algorithm to allow for indirect flights. For each MSA pair

with airports served by at least one of the airlines in our dataset we compute the fastest

travel time in each of the four years.

Using images of flight schedules, we digitized the flight network for six major air-

lines: American Airlines (AA), Eastern Air Lines (EA), Trans World Airlines (TWA),

United Airlines (UA), Braniff International Airways (BN) and Northwest Airlines (NW).

Note that the first four in this list were often referred to as the Big Four, highlighting

their dominant position in the market. They alone accounted for 74% of domestic

trunk revenue passenger-miles from February 1955 to January 1956. Together the

six airlines accounted for 82% of revenue passenger-miles in that same period, 77%

from February 1960 to January 1961 and 78% from February 1965 to January 1966

(C.A.B., 1966). Our sample of airlines thus covers a vast share of the domestic market

for air transport. In addition, the airlines were chosen to maximize geographic coverage.

In total we obtain a sample of 5,910 flights. These flights often have multiple stops. If

we count each origin-destination pair of these flights separately, our sample contains

17,469 legs.

Table 5 lists the exact dates of when flight schedules we digitized became effective.

Due to limited data availability not all flight schedules are drawn from the same part of

the year. As seasonality of the network seems limited and given the large market share

of the airlines we consider, our data is a good approximation of the network in a given

year.
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Table 5: Date of Digitized Flight Schedules

Airline 1951 1956 1961 1966

AA September 30 April 29 April 30 April 24
EA August 1 October 28 April 1 April 24
TWA August 1 September 1 April 30 May 23
UA April 29 July 1 June 1 April 24
BN August August 15 April 30 April 24
NW April 29 April 29 May 28 March 1
PA June 1 July 1 August 1 August 1

Figure 17 shows two pages of the flight schedule published by American Airlines

in 1961. Each column corresponds to one flight. As can be seen, one flight often has

multiple stops. Departure and arrival times in most flight schedules are indicated

using the 12-hour system. PM times can be distinguished from AM times by their bold

print. In the process of digitization we converted the flight schedules to the 24-hour

system. Times in most tables are in local time. We thus recorded the time zones that are

indicated next to the city name and converted them to Eastern Standard Time.

Figure 17: Flight Schedule American Airlines 1961.
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To obtain exact geographical information on where airports are located, we match

city names to their IATA airport codes. We use the addresses of ticket offices that are

indicated on the last pages of the flight schedules. Most of the ticket offices were located

directly at the airport, allowing to infer the airport the airline was serving in a given

year. For some flight schedules we are missing these last pages and used information

from adjacent years in order to identify airports. We also manually verified the airport

match using various online sources. We then obtain geographical coordinates from a

dataset provided by https://ourairports.com/ (downloaded July 2020).

From the flight schedule we also collect information on the aircraft model, indicated

next to the flight number. Using various online sources, we manually identified aircraft

models that are powered by a jet engine. We thus know on which connections airlines

were using jet aircraft.

Flight Schedules also contain information on connecting flights. For example, the

second column in figure 17 indicates a departure from Boston leaving at 12.00 local time.

A footnote is added to the departure time indicating that this departure is a connection

via New York. It is thus not operated by flight 287 otherwise described in column 2, but

it is just supplementary information for the passenger. As we are interested in the speed

of aircraft and the actual travel time on a given link, this information on connecting

flights would pollute our data and we thus delete this supplementary information.

As outlined above, the digitization requires human input. It is thus prone error-prone.

The travel time calculation relies on each link in the network, and if one important

connection has a miscoded flight, it might potentially distort the travel time between

many MSA pairs. We thus implement an elaborate method to detect mistakes in the

digitization process. In particular, after the initial transcription, we regress the observed

duration of the flight on a set of explanatory variables: the full interaction of distance,

a set of airline indicators, a set of year indicators and a dummy variable indicating

whether the aircraft is powered by a jet engine or not. This linear model yields an
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R2 above 95%. We then compute the predicted duration of each flight and obtain

the relative deviation from the observed duration. If the deviation is above 50%, we

manually check whether the transcribed information is correct. If we find a mistake,

we correct the raw data, rerun the regression and recompute relative deviations, until

all the observations with more than 50% deviation have been manually verified.

For 15 connections, the information was correctly transcribed from the flight sched-

ule, but the flight time differed a lot from other flights with similar distances that used

the same aircraft. The implied aircraft speed for these cases is either unrealistically

high or low, in one case the implied flight time is even negative. These cases seem to

be typos introduced when the flight schedule was created (e.g. a ”2” becomes a ”3”).

Instead of inferring what the true flight schedule was which is not always obvious, we

drop these cases. Table 6 lists all 15 cases.

Table 6: Dropped Connections

Airline Year Origin Destination Departure Time Arrival Time

0 UA 66 TYS DCA 1940 2036
1 UA 66 LAX BWI 2150 1715
2 UA 66 CHA TYS 1635 1909
3 PA 66 SFO LAX 2105 1850
4 PA 66 SEA PDX 705 935
5 PA 56 PAP SDQ 830 835
6 PA 51 HAV MIA 800 903
7 PA 51 SJU SDQ 825 830
8 NW 66 HND OKA 655 1135
9 EA 66 ORD MSP 2340 2340
10 EA 56 SDF MDW 1352 1418
11 EA 56 GSO RIC 2207 2204
12 AA 56 PHX TUS 1630 1655
13 PA 51 STR FRA 1320 1540
14 EA 66 TPA JFK 1330 1548

As our analysis is at the MSA level, we match airports to 1950 MSA boundaries. Each

airport is matched to all MSAs for which it lies inside the MSA boundary or at most
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15km away from the MSA boundary. If we focus only on airports contained within

MSA boundaries, we would, for example, drop Atlanta’s airport. Of 275 US airports,

156 airports are matched to at least one MSA. 18 of these are matched to two MSAs and

Harrisburg International Airport is matched to three MSAs: Harrisburg, Lancaster and

York. Out of 168 MSAs, 142 are at some point connected to the flight network in our

dataset. In table 7 we present the 168 MSAs, the ones that are connected at least once,

and the ones that are connected in the four years.

Figure 18: Airports matched to MSAs.

Next, we compute the shortest travel time for every airport pair, and then take the

minimum to obtain shortest travel time at the MSA pair level. In particular, we apply

Dijkstra’s algorithm to compute shortest paths (Dijkstra et al., 1959). We adjust this

algorithm to take into account the exact timing of the flight schedules. We consider

a possible departure time t from origin city o and then compute the shortest path to

destination city d at this time of the day. If getting to d requires switching flights, we
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account for the required time at the location of the layover. We repeat this procedure

for every possible departure time t at origin city o and then take the minimum that

gives us the fastest travel time from o to d, τod.

The flight schedule format requires us to make one assumption. In particular, the

flight schedule for a multi-stop flight may either indicate the arrival time or the depar-

ture time for a particular stop. If the flight schedule only lists the departure time, we

need to infer the arrival time and vice versa. We allow for five minutes between arrival

and departure. This is relatively low, but still in the range of observed difference be-

tween departure and arrival for cases where we observe both. As correspondences may

have been ensured by airlines in reality, i.e. one aircraft waiting with departure until

other aircraft arrive, we opted for the lower end of the observed range of stopping times.

Finally, since the shortest travel time measure may not capture the benefits of a

highly frequented hub, we also calculate the daily average of the shortest travel time.

In particular, we compute the shortest travel time at every full hour of the day and take

the average. This measure thus captures the benefits of being located near an airport

where flights depart many times per day.

To conclude, we end up with a set of four origin-destination matrices indicating the

fastest travel time (and another set with the average daily travel time) between US

MSAs in 1951, 1956, 1961 and 1966.

A.2. Descriptive Statistics

Table 8 shows the number of non-stop connections between MSAs by year and airline.

It underlines the dominant position of the Big Four (AA, EA, TW, UA) which were much

bigger than their competitors (BN and NW). The growth of the airline industry is also

apparent. All airlines had the lowest number of connections in 1951 and subsequently
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extended their network. At the same time the average distance of the connections grad-

ually increased over time. Part of this may have been due to jet technology allowing

for longer aircraft range. We thus analyze a period where more and longer flights are

introduced.

Table 8: Domestic Non-Stop Connections by Airline and Year

Airline Year Number of
connections

Jet Share
(connec-

tions)

Jet Share
(km)

Mean
Distance (in

km)

AA 1951 258 0.00 0.00 515.32
AA 1956 367 0.00 0.00 889.66
AA 1961 325 22.15 50.50 768.24
AA 1966 282 73.40 89.52 1020.36

BN 1951 96 0.00 0.00 317.90
BN 1956 210 0.00 0.00 380.60
BN 1961 176 8.52 18.84 460.41
BN 1966 150 72.00 76.64 553.09

EA 1951 345 0.00 0.00 319.87
EA 1956 479 0.00 0.00 412.60
EA 1961 595 3.70 13.28 441.42
EA 1966 492 54.47 75.46 569.01

NW 1951 77 0.00 0.00 521.70
NW 1956 95 0.00 0.00 724.77
NW 1961 127 11.02 32.43 824.59
NW 1966 136 77.94 90.86 945.81

TW 1951 210 0.00 0.00 503.69
TW 1956 253 0.00 0.00 711.78
TW 1961 240 28.75 54.63 807.72
TW 1966 265 86.42 96.05 1143.30

UA 1951 291 0.00 0.00 492.88
UA 1956 361 0.00 0.00 714.39
UA 1961 323 31.89 65.32 803.49
UA 1966 533 49.91 79.54 781.38

While these changes in the network are remarkable, airlines were constrained by the

regulator in opening new routes. Accordingly, table 9 shows that the network remains

A7



relatively stable over time with more than three quarters of connections remaining

intact within a five-year window. Interestingly, during the beginning of the jet age (i.e.

1956 to 1961), the network appears to have been especially stable, with only 11% of

connections either disappearing or newly being added. Thus, the rise of jet aircraft did

not lead to a vast reshaping of the network. Given the very different technology, this

may be surprising, but may partly be due to heavy regulation.

The table also shows that newly introduced routes were over long distances whereas

those discontinued were operating on shorter distances. When changes in the network

took place, they thus seemed to improve the network for places further apart.

Table 9: Network Changes (weighted by frequency)

Period Remain connected Newly connected Disconnected

Share of Non-stop Connections (%)
1951 to 1956 78.47 16.79 4.74
1956 to 1961 88.96 6.43 4.6
1961 to 1966 80.64 12.37 6.99

Mean distance (km)
1951 to 1956 411 1075 337
1956 to 1961 524 914 972
1961 to 1966 568 769 450
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Table 10: Network Changes

Period Remain connected Newly connected Disconnected

Connected MSAs
1951 to 1956 119 7 8
1956 to 1961 122 0 4
1961 to 1966 114 7 8

Non-stop Connections
1951 to 1956 721 357 124
1956 to 1961 908 231 170
1961 to 1966 912 331 227

Changes in the number of connected MSAs and connections among them. A MSA is connected if in our
data it appears as having at least one incoming and one outgoing flight. A non-stop connection refers to

a pair of origin MSA-destination MSA between which a non-stop flight operates.

Figure 19 shows all non-stop connections in our data weighted by the (log) frequency.

Initially, the network was concentrated in the Eastern states and transcontinental routes

were not yet established, due to technological limitations. In contrast, in the 1960s, after

the jet is introduced, intercontinental routes quickly emerge and are operated at a high

frequency. Similarly, direct connections from the Northeast to Florida intensify. The

figure echos the findings from table 10 which illustrates that the overall number of MSA

pairs with a direct connection increases over time.
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Figure 19: Flight Network by Year. Weighted by log weekly frequency.

Airlines differed in their speed of adoption of the newly arrived jet aircraft. Table

8 shows that, in 1961, 65% of UA’s connections between MSAs were flown using a jet

aircraft (weighted by distance), whereas this was only true for 13% of EA’s connections.

While adoption was heterogeneous across airlines, adoption was fast. By 1966, all

airlines were operating 75% of their connections with jet aircraft (weighted by distance).

Figure 20 show the average speed of jet and propeller aircraft by distance. Generally,

jet aircraft were substantially faster, but especially so on long-distance flights, where

they could be up to twice as fast as propeller-driven aircraft. This particularly stark

difference in speed for long-haul flights is also reflected by adoption. Figure 21 shows

that jet aircraft were first introduced on long-haul flights. Only 50% of MSA pairs at

around 1,500 km distance had at least one jet aircraft operating, whereas 100% of pairs

above 3,000 km. Then, in the late 1960s, they were also gradually introduced on shorter

distances. In fact, for all pairs above 2,000 km there was at least one jet engine-powered

flight.
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Figure 20: Speed by Aircraft Type. Pooling all Years.

Figure 21: Jet Adoption
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Figure 22 shows on which routes jets were operating. In the early days of the jet

age it was mainly the transcontinental corridor between New York and California that

benefited. In 1966 propeller aircraft were already being phased out and only operating

in the dense Eastern part of the US where distances between cities are relatively small.

Figure 22: Jet Adoption by Year

The increase in speed due to jet aircraft caused a dramatic reduction in travel times

between US cities. When looking at the full origin-destination matrix, i.e. including

indirect flights, a network-wide reduction in travel time becomes apparent. Figure 23

shows travel times between US MSAs. While the figure shows a gradual decline in

travel time from 1951 to 1966, it also illustrates that conditional on distance and year a

large amount of variation in travel time remains, as only a small fraction of all MSA

pairs were connected via a direct flight (around 8.5% in 1966).
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Figure 23: Travel Times between US MSAs.

Figure 24 that the change in travel time is accompanied by a reduction of the amount

of legs needed to connect two MSAs at every distance. This reduction is specially

marked between 1951 and 1956, and 1961 and 1966. In Figure 25 we open up the

change in travel time by the way an MSA pair was connected in 1951 and 1966: either

directly (non-stop flight) or indirectly (connecting flight). We observe that much of the

increase in travel time for MSA pairs less than 250km apart comes from routes that were

operated non-stop and then it needed a connecting flight. Interestingly, for MSA-pairs

more than 2,000km apart travel time reduced on average 42% for those pairs that were

connected indirectly in both periods, and 51% for those that switched from indirect to

direct. This fact shows the relevance of improvements in flight technology even for

MSAs not directly connected. It could be the case that a reduction in the amount of legs

or an increase in frequency of flights reduces layover time. In Figure 27 we compare the
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change in travel time from 1951 to 1966 with a fictitious change in travel time in which

we eliminate layover time in both time periods. We observe that the average change

in travel time is stronger at every distance if we disregard layover time. This implies

that the relative importance of layover time over total travel time increases between

1951 and 1966, preventing total travel time to decrease proportionally to the change of

in-flight travel time.

Figure 24: Average amount of legs per route
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Figure 25: Change in US travel time 1951 to 1966: connections
92

Figure 26: Change in US travel time 1951 to 1966: connections, discarding layover time
93
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Figure 27: Change in US travel time 1951 to 1966: layover time

In figure 28 we show the average change in travel time in three counterfactual flight

networks. The first counterfactual fixes the flight routes94 and allows aircraft speed

to evolve. The second counterfactual fixes aircraft speed and allows flight routes to

evolve. The third counterfactual allows both flight routes and aircraft speed to evolve.

We obtain that around 90% of the change in travel time is due to the change in speed of

aircrafts, while around 10% of the change is due to the change in the flight routes. In

the figure 29 in the appendix we show that the proportion is relatively constant for all

distances. This confirms that most of the observed changes in the network are due to

improvements in the flight technology.

94Fixes the origin-destination airports that are connected with a non-stop flight
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Figure 28: Counterfactual change in travel time
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Figure 29: Counterfactual change in travel time 1951-1966

In addition to the changes over time in the network leading to faster travel times,

another feature of the US airline industry becomes salient in the data: airlines’ regional

specialization. As figure 30 shows, while there was competition among the airlines

in our dataset on the major routes (Lower West Coast to the Midwest and Upper East

Coast to the Midwest), some airlines are very specialized and face no competition

from any of the other five airlines on certain routes. In particular, NW controls the

routes connecting Seattle to the Midwest and EA controls much of the connections from

Florida to New York and surroundings.
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Figure 30: Flight Network in 1956 by Airline (weighted by log frequency).

A.3. Instrumental travel time

In order to construct the instrumental travel time we first estimate, separately for each

year, a linear regression of travel time on flight distance using only the fastest non-stop

flight in each origin-destination airport pairs. These yearly regressions provide us

with the fictitious average airplane of each year: the intercept gives the take-off and

landing time of the airplane while the slope provides the (inverse) speed. Results on

this estimation are provided in Table 11.
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Table 11: Regression of travel time on distance fastest non-stop
flights

Travel time (min)
Year 1951 1956 1961 1966

(1) (2) (3) (4)

Constant 25.3∗∗∗ 24.1∗∗∗ 39.5∗∗∗ 29.9∗∗∗

(0.809) (0.656) (0.921) (0.678)
Distance (km) 0.146∗∗∗ 0.132∗∗∗ 0.079∗∗∗ 0.068∗∗∗

(0.001) (0.0007) (0.0010) (0.0006)

Observations 1,137 1,479 1,438 1,490
R2 0.93 0.96 0.82 0.90
Implied speed (km/h) 412 453 758 876

The table presents the results of estimating by OLS: travel timeijt =
α0 + α1 × distanceij + εijt separately for each year t ∈
{1951, 1956, 1961, 1966}. The sample consist of all airport pairs that
are connected with a non-stop flight in the respective year. Travel
time is the fastest non-stop flight between the airports measured
in minutes. The implied speed is calculated as the inverse of the
coefficient on distance multiplied by 60.

B. Appendix: Patent data

In this appendix we describe facts that we observe in the US patent data, for patents

filed95 between 1945 and 1975. US patents data containing citations and filing year have

been downloaded from Google Patents. Then, it was merged with multiple datasets

(see Appendix Patent Data Construction for more details):

• Technology classification: NBER patent database.

• Geographic location of inventors: Histpat and Histpat International for patents

95Filing year, also called application year, is the closest date to the date of invention that is present in the
data and it represent the date of the first administrative event in order to obtain a patent. In the other
hand, publishing or also called granting year, is the later year in which the patent is granted. The
difference between filing and granting year depends on diverse non-innovation related factors (as
capacity of the patent office to revise applications) and changes over time. Hence filing year is the
date in our data that approximates the best to the date of invention.
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published until 1975, Fung Institute for patents published after 1975. Both

matched to 1950s Metropolitan Statistical Areas (MSAs).

• Ownership: Kogan et al. (2017) for patents owned by firms listed in the US stock

market, Patstat for the remaining patents not matched to Kogan et al. (2017).

We highlight two details from the matching process: 1. During filing years 1971-1972

the rate of non-geocoded patents increases, possibly due to Histpat and Fung data

not being a perfect continuation one of the other. 2. Kogan et al. (2017) seems to use

a matching method based on the patent owner declared in the patent text, as Patstat

does. Specially, Kogan et al. (2017) does not explicitly say if it takes into account firm-

ownership structure to determine patent ownership, neither does Patstat.

For the analysis presented in this appendix we will use the resulting dataset from

the matching procedure, where unless evident or noticed, we will use only patents

that have inventors within MSAs. We discard patents that have inventors in multiple

MSAs and patents that belong to government organizations or universities. We assign

patents to technology categories using fractional count: if a patent is listed in two

technology categories, then we assign half a patent to each category. We discard self

citations (citations in which the citing patent owner is the same as the cited patent

owner) because self-citations may be due to different incentives.

B.1. Matching patents to locations

In figure 31 we observe that the matching rate decreases from around 95% before

1970, to around 80% in 1971 and 1972, and then it stabilizes around 99% after 1975.

Hence, geogprahical results during years 1970-1975 will contain an increased amount

of measurement error.
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Figure 31: Non-matching rate HistPat, HistPat International and Fung

Figure 32 shows the share of patents that have inventors inside MSAs, and figure 33

displays the same by technology category.96

96Technologies are aggregated to six big groups, as explained in HJT 2002
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Figure 32: Share patents in Metropolitan Statistical Areas

Figure 33: Share patents in Metropolitan Statistical Areas
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B.2. Input-Output of patents

In the same spirit as how Input-Output tables of industries are constructed, we can

use citations as a reflection of sourced (input) knowledge. In this case, we interpret

the cited patent as being a source of knowledge, and the citing patent as being a desti-

nation. In Figure 34 we aggregate citations by citing-cited technology category in the

years 1949-1953. Rows represent the source technology and columns the destination

technology. Columns should sum to 1 (round errors may exist). We highlight in bold

those IO coefficients that are higher than 0.1. We observe that the diagonal has coef-

ficients greater than 0.5, implying that technologies rely on themselves to create new

knowledge. At the same time, we observe the importance of Electrical to create Com-

munication technologies, and the small relevance of Drugs for every other technology.

Figure 34: Input-Output of technologies 1949-1953

B.3. Descriptive statistics

Table 12 shows descriptive statistics along each step of the patent data matching and

sample selection. The final dataset contains 515,089 patents and 1,639,326 citations.
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Table 12: Patent data sample selection

Sample N patents N citations
1st quartile
cit dist (km)

2nd quartile
cit dist (km)

3rd quartile
cit dist (km)

Google patents 964,582 4,392,725
With location 923,150 4,191,886
US 749,410 3,569,578
MSA 589,870 2,354,844
Single location 571,969 2,237,095 213 730 1,682
With owner id 571,824 1,963,644 199 696 1,673
Non gov/univ 565,372 1,932,297 199 696 1,664
With travel time (final sample) 515,089 1,639,326 184 689 1,645

Figure 35: Patents per capita in 1951
Quantiles of patents per capita are computed in each technology and then averaged across technologies.

Population is from 1950 Census.
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Figure 36: Patent growth by initial innovativeness ranking of MSA
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Table 7: Connected MSAs

MSA fips MSA name <=3 periods 4 periods MSA fips MSA name <=3 periods 4 periods

80 Akron, OH SMA X X 4680 Macon, GA SMA X X
160 Albany-Schenectady-Troy, NY SMA X X 4720 Madison, WI SMA X X
200 Albuquerque, NM SMA X X 4760 Manchester, NH SMA
240 Allentown-Bethlehem-Easton, PA-NJ SMA X X 4920 Memphis, TN SMA X X
280 Altoona, PA SMA 5000 Miami, FL SMA X X
320 Amarillo, TX SMA X X 5080 Milwaukee, WI SMA X X
480 Asheville, NC SMA X 5120 Minneapolis-St. Paul, MN SMA X X
520 Atlanta, GA SMA X X 5160 Mobile, AL SMA X X
560 Atlantic City, NJ SMA X 5240 Montgomery, AL SMA X X
600 Augusta, GA-SC SMA X X 5280 Muncie, IN SMA
640 Austin, TX SMA X X 5360 Nashville, TN SMA X X
720 Baltimore, MD SMA X X 5400 New Bedford, MA SMA
760 Baton Rouge, LA SMA X 5440 New Britain-Bristol, CT SMA
800 Bay City, MI SMA X 5480 New Haven, CT SMA X X
840 Beaumont-Port Arthur, TX SMA X 5560 New Orleans, LA SMA X X
960 Binghamton, NY SMA X 5600 New York-Northeastern NJ, NY-NJ SMA X X

1000 Birmingham, AL SMA X X 5720 Norfolk-Portsmouth, VA SMA X
1120 Boston, MA SMA X X 5840 Ogden, UT SMA X
1160 Bridgeport, CT SMA X X 5880 Oklahoma City, OK SMA X X
1200 Brockton, MA SMA 5920 Omaha, NE-IA SMA X X
1280 Buffalo, NY SMA X X 5960 Orlando, FL SMA X X
1320 Canton, OH SMA X X 6120 Peoria, IL SMA X
1360 Cedar Rapids, IA SMA X X 6160 Philadelphia, PA-NJ SMA X X
1440 Charleston, SC SMA X X 6200 Phoenix, AZ SMA X X
1480 Charleston, WV SMA X X 6280 Pittsburgh, PA SMA X X
1520 Charlotte, NC SMA X X 6320 Pittsfield, MA SMA
1560 Chattanooga, TN-GA SMA X X 6400 Portland, ME SMA
1600 Chicago, IL-IN SMA X X 6440 Portland, OR-WA SMA X X
1640 Cincinnati, OH-KY SMA X X 6480 Providence, RI SMA X X
1680 Cleveland, OH SMA X X 6560 Pueblo, CO SMA X
1760 Columbia, SC SMA X X 6600 Racine, WI SMA X X
1800 Columbus, GA-AL SMA X X 6640 Raleigh, NC SMA X X
1840 Columbus, OH SMA X X 6680 Reading, PA SMA X X
1880 Corpus Christi, TX SMA X X 6760 Richmond, VA SMA X X
1920 Dallas, TX SMA X X 6800 Roanoke, VA SMA X X
1960 Davenport-Rock Island-Moline, IA-IL SMA X X 6840 Rochester, NY SMA X X
2000 Dayton, OH SMA X X 6880 Rockford, IL SMA
2040 Decatur, IL SMA 6920 Sacramento, CA SMA X X
2080 Denver, CO SMA X X 6960 Saginaw, MI SMA X
2120 Des Moines, IA SMA X X 7000 St. Joseph, MO SMA X
2160 Detroit, MI SMA X X 7040 St. Louis, MO-IL SMA X X
2240 Duluth-Superior, MN-WI SMA X 7160 Salt Lake City, UT SMA X X
2280 Durham, NC SMA X X 7200 San Angelo, TX SMA
2320 El Paso, TX SMA X X 7240 San Antonio, TX SMA X X
2360 Erie, PA SMA X 7280 San Bernardino, CA SMA
2440 Evansville, IN SMA X X 7320 San Diego, CA SMA X X
2480 Fall River, MA-RI SMA X X 7360 San Francisco-Oakland, CA SMA X X
2640 Flint, MI SMA X 7400 San Jose, CA SMA
2760 Fort Wayne, IN SMA X X 7520 Savannah, GA SMA X
2800 Fort Worth, TX SMA X X 7560 Scranton, PA SMA X X
2840 Fresno, CA SMA X X 7600 Seattle, WA SMA X X
2880 Gadsden, AL SMA 7680 Shreveport, LA SMA X
2920 Galveston, TX SMA X X 7720 Sioux City, IA SMA X
3000 Grand Rapids, MI SMA X 7760 Sioux Falls, SD SMA X
3080 Green Bay, WI SMA 7800 South Bend, IN SMA X X
3120 Greensboro-High Point, NC SMA X X 7840 Spokane, WA SMA X X
3160 Greenville, SC SMA X X 7880 Springfield, IL SMA X
3200 Hamilton-Middletown, OH SMA 7920 Springfield, MO SMA X
3240 Harrisburg, PA SMA X X 7960 Springfield, OH SMA
3280 Hartford, CT SMA X X 8000 Springfield-Holyoke, MA-CT SMA X X
3360 Houston, TX SMA X X 8040 Stamford-Norwalk, CT SMA X
3400 Huntington-Ashland, WV-KY-OH SMA X 8120 Stockton, CA SMA X X
3480 Indianapolis, IN SMA X X 8160 Syracuse, NY SMA X X
3520 Jackson, MI SMA X 8200 Tacoma, WA SMA
3560 Jackson, MS SMA 8280 Tampa-St. Petersburg, FL SMA X X
3600 Jacksonville, FL SMA X X 8320 Terre Haute, IN SMA X X
3680 Johnstown, PA SMA 8400 Toledo, OH-MI SMA X X
3720 Kalamazoo, MI SMA X 8440 Topeka, KS SMA X
3760 Kansas City, MO-KS SMA X X 8480 Trenton, NJ SMA
3800 Kenosha, WI SMA 8560 Tulsa, OK SMA X X
3840 Knoxville, TN SMA X X 8680 Utica-Rome, NY SMA
4000 Lancaster, PA SMA X X 8800 Waco, TX SMA X
4040 Lansing, MI SMA X 8840 Washington, DC-MD-VA SMA X X
4080 Laredo, TX SMA X 8880 Waterbury, CT SMA
4160 Lawrence, MA SMA 8920 Waterloo, IA SMA X
4280 Lexington, KY SMA X X 9000 Wheeling-Steubenville, WV-OH SMA X
4320 Lima, OH SMA 9040 Wichita, KS SMA X X
4360 Lincoln, NE SMA X X 9080 Wichita Falls, TX SMA X X
4400 Little Rock-North Little Rock, AR SMA X X 9120 Wilkes-Barre–Hazleton, PA SMA X X
4440 Lorain-Elyria, OH SMA X X 9160 Wilmington, DE-NJ SMA X X
4480 Los Angeles, CA SMA X X 9220 Winston-Salem, NC X X
4520 Louisville, KY-IN SMA X X 9240 Worcester, MA SMA X
4560 Lowell, MA SMA 9280 York, PA SMA X X
4600 Lubbock, TX SMA X X 9320 Youngstown, OH-PA SMA X X



Figure 38: Geography of patenting 1951



Figure 39: Patents per capita in 1951



Figure 40: Patent growth rate 1951-1966



B.3.1. Descriptive statistics by technology

Figure 37: Share of patents by region
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Figure 41: Patent growth rate by region
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Figure 42: Quantiles of citation distance
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Figure 43: Share of citations by distance
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C. Appendix: US Census Regions

Figure 44: US Census Regions
Source: US Census Bureau

D. Appendix: Bias Correction and IV estimation

D.1. Split-panel jackknife bias correction

Weidner and Zylkin (2021) show that PPML estimation of gravity equations with three-

way fixed effects (origin-time, destination-time, origin-destination) is consistent but

asymptotically biased. In their words: ”the asymptotic distribution of the estimates is not

centered at the truth as N → ∞” (page 2). The asymptotic bias concerns both point

estimates and standard errors. In order to correct the bias we apply their suggested

split-panel jackknife bias correction of section 3.4.1 to both point estimates and boot-

strap standard errors. The idea of the jackknife bias correction is to estimate the model

in many subsamples and then subtract the average coefficients of the subsamples from

(twice) the original coefficient.

As suggested in Weidner and Zylkin (2021) when using real world data (as opposite
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to simulated data), we estimate the bias correction repeatedly. We modify equation (14)

in Weidner and Zylkin (2021) to define the bias corrected coefficient as:

β̃J
N := 2 × β̂ − 1

Z ∑
z

∑
p

β̂(p,z)

4
(11)

where p is a random subsample of size 1/4th of the original sample, and Z is the

amount of times to subsample.

The procedure to estimate bias corrected point estimate β̃J
N is as follows:

1. Estimate β̂: the not-bias-corrected estimate of equation (3)

2. Randomly allocate all citing establishment-technology Fih into two equally sized

groups (groups are time-invariant). Call them citing groups a and b.

3. Randomly allocate all cited establishment-technology Gjk into two equally sized

groups (groups are time-invariant). Call them cited groups a and b.

4. Create four p subsamples of the original data: (a,a), (a,b), (b,a), (b,b). Subsamples

keep the same granularity as the original data FiGjhkt.

5. Estimate equation (3) (gravity equation of the main text) in each of the subsamples

from the previous step to obtain β̂(p,z).97 Store the four estimated coefficients.

6. Repeat Z times steps 2 to 5.

7. Compute equation 11

To compute bias-corrected bootstrap standard errors we need to bias-correct the

point estimate β̃J
m of each bootstrap iteration m. The procedure to estimate bias corrected

standard errors is as follows:

97Given that we require to identify the fixed effects, the effective subsample in all four p estimations does
not have the same amount of observations. However, in our estimations the effective subsample size
across p subsamples does not differ by more than 5%.
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1. Sample establishment-technology-pairs FiGjhk with replacement such that we

obtain a re-sampled data of the same size as the original data (hence, some FiGjhk

will be repeated in the re-sampled data). Sampled FiGjhk are kept for all time

periods in order to keep the source of identification of β: across time variation

within a establishment pair. Label this new dataset datam.

2. Using datam, estimate equation (3) to obtain β̂m (this is a point estimate of the

specific datam)

3. Using datam, repeat ZM times steps 2 to 5 of the procedure to estimate bias corrected

point estimate. This step provides ZM × 4 point estimates β̂(p,m,zM)

4. Compute the bias corrected point estimate of bootstrap m β̃J
m = 2 × β̂m −

1
ZM

∑zM ∑p
β̂(p,m,zM)

4 .

5. Store the bias corrected point estimate of bootstrap m

6. Repeat steps 1 to 5 M times to obtain M bias corrected bootstrap point estimates

β̃J
m

7. Compute the variance-covariance matrix of bias corrected bootstrap coefficients

β̃J
m and use it to compute standard errors of β̃J

N

The bias correction of point estimates and bias correction of bootstrap standard

errors implies estimating Z × 4 + ZM × M × 4 models. This is a computationally

demanding task. To estimate columns (1) and (2) of Table 1 we set Z = 100, ZM = 5

and M = 200, adding up to 1, 100 models to estimate for each column.

As recommended in Hansen (2021), in the Table 13 we repeat Table 1 but reporting

0.025 and 0.975 quantile values of bootstrap estimates (bias corrected for columns (1)

and (2)) instead of standard errors:

A37



PPML IV PPML
Dep. variable: citations

(1) (2) (3) (4)
log(travel time) −0.083 −0.152

(−0.129;−0.056) (−0.210;−0.097)

log(travel time) × 0-300km 0.019 −0.076
(−0.054; 0.082) (−0.542; 0.384)

log(travel time) × 300-1,000km −0.089 −0.134
(−0.141;−0.052) (−0.246;−0.066)

log(travel time) × 1,000-2,000km −0.094 −0.112
(−0.156;−0.022) (−0.192;−0.022)

log(travel time) × +2,000km −0.169 −0.203
(−0.277;−0.105) (−0.311;−0.136)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88

Table 13: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to
1 when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute
zero citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance
bin between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two
step instrumental variables estimation, where log(travel timeijt) is instrumented with log(travel timefix routes

ijt ), the
travel time that would have taken place if routes were fixed to the ones observed in 1951 and in each year routes
were operated with the average airplane of the year. 0.025 and 0.975 quantile bootstrap estimates are presented
in parentheses. The coefficients and bootstrap estimates in columns (1) and (2) are jackknife bias-corrected. R2 is
computed as the squared correlation between observed and fitted values.
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D.2. Instrumental variables PPML

To implement the instrumental variables of Poisson estimation we follow the control

function approach described in Wooldridge (2014). We explain the procedure using the

estimation of the elasticity of citations to travel time. The procedure is similar for the

elasticity of (new) patents to knowledge access. We proceed in two steps estimating the

following two equations:

log(travel time)FiGjhkt = λ2 log(instrumental travel timeFiGjhkt)

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(12)

citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(13)

In a first step we estimate equation (12) and obtain estimated residuals ûFiGjhkt. In a

second step we use the estimated residuals as a regressor in equation (13) which controls

for the endogenous component of travel time.

To perform inference we bootstrap standard errors in the following way:

1. Sample establishment-technology-pairs FiGjhk with replacement such that we

obtain a re-sampled data of the same size as the original data (hence, some FiGjhk

will be repeated in the re-sampled data). Sampled FiGjhk are kept for all time

periods in order to keep the source of identification of β: across time variation

within a establishment pair. Label this new dataset datam

2. Using datam, estimate equations (12) and (13) to obtain the bootstrap estimate β̂m.

Store β̂m.

3. Repeat M times steps 1 and 2.

4. Compute the variance-covariance matrix of β̂m and use it to compute standard

errors of β̂

For columns (3) and (4) of Table 1, and columns (3) and (4) of Table 3 we set M = 200.
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E. Appendix: Additional results

E.1. Diffusion of knowledge

E.1.1. Heterogeneous effects

First, we investigate if the elasticity varies by the degree of concentration of patents

across establishments in the citing technology or cited technology, we find no statisti-

cally significant heterogeneous effect. Results are shown in columns (1) and (2) of Table

15.

Second, we check if the elasticity varies by the median forward and backward citation

lags of the cited and citing technologies. We find that the elasticity of citations to travel

time is more negative both for technologies that accumulate citations during a longer

time period and for technologies that cite older patents. To be able to precisely show if

it is newer or older technologies that diffuse better as consequence of the jet requires an

analysis with the citation level forward and backward lag, and not using the median

lag in the technology. Nonetheless, the results seem to suggest that jets improved the

diffusion of older technologies. Results are shown in columns (3) and (4) of Table 15.

Third, we extend the sample of patents to include patents with a patent owner iden-

tified as a government organization or university. Column (5) of Table 15 opens the

elasticity of citations to travel time by whether the citing patent belongs to a government

organization of university. Column (6) includes a dummy for whether the cited patent

belongs to a government organization or university. We do not observe a particular

change in the pattern of the elasticity of citations to travel time.

Fourth, we extend the sample to include self citations (citations in which the citing

and cited patents belong to the same patent owner F). Column (7) of Table 15 shows

that the elasticity is not statistically different for self citations.
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Fifth, we check if the elasticity varies with the level of innovativeness of the citing

firm. It may be the case that those firms that actually have the -time and monetary-

budget to take a plane are only the most innovative ones. We rank firms F in technology

h according to the amount of patents filed by F in technology h at the initial time

period 1949-1953. We define quantile 0.00 as all those firms that did not file patents in

1949-1953, while quantile 0.01 is assigned to those that filed patents but not as many

as to be in the quantile 0.25 or higher. Results are shown in Table 14. We do not find a

particular pattern related to the initial innovativeness.

Sixth, we check if the elasticity varies with the citing technology, cited technology and

citing-cited technology pair. Results are shown in Table 16 and Table 17. We find that

the elasticity is negative and significant mainly when the citing and cited technology

are the same. In Appendix B we show that most citations happen within a technology,

so most identification power would be when citing and cited technologies are the same.
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Concentration
citing

Concentration
cited

Cited lag
forward

Citing lag
backward

Citing
govnt & uni

Cited
govnt & univ

Self
citation

Dep. variable: citations
(1) (2) (3) (4) (5) (6) (7)

log(travel time):0-300km 0.103 0.160 −0.045 0.1907 0.021 0.018 0.002
(0.121) (0.114) (0.472) (0.538) (0.038) (0.038) (0.039)

log(travel time):300-1000km −0.105 −0.039 −0.546 −0.145 −0.102∗∗∗ −0.099∗∗∗ −0.077∗∗∗
(0.084) (0.095) (0.364) (0.366) (0.027) (0.027) (0.029)

log(travel time):1000-2000km −0.138 −0.117 0.086 0.101 −0.094∗∗ −0.093∗∗ −0.094∗∗
(0.105) (0.116) (0.480) (0.498) (0.042) (0.041) (0.040)

log(travel time):+2000km −0.287∗∗∗ −0.268∗∗∗ 0.720∗∗ 0.560 −0.185∗∗∗ −0.188∗∗∗ −0.153∗∗∗
(0.105) (0.090) (0.344) (0.472) (0.049) (0.048) (0.040)

log(travel time):0-300km × X −1.180 −2.013 0.028 −0.066 −0.125 0.481 0.038
(1.843) (1.712) (0.185) (0.211) (0.367) (0.543) (0.252)

log(travel time):300-1000km × X 0.079 −0.880 0.178 0.018 −0.088 −0.609∗ 0.077
(1.188) (1.366) (0.144) (0.145) (0.265) (0.330) (0.127)

log(travel time):1000-2000km × X 0.634 0.341 −0.073 −0.078 −0.282 −0.370 0.082
(1.412) (1.606) (0.191) (0.197) (0.366) (0.385) (0.210)

log(travel time):+2000km × X 1.436 1.157 −0.366∗∗∗ −0.299 −0.328 0.015 −0.073
(1.456) (1.136) (0.137) (0.188) (0.410) (0.295) (0.170)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 800, 144 4, 800, 144 4, 835, 001
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.94
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 15: Elasticity of citations to travel time: Heterogeneity (part 1)
Result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + ∑d αd 1{distanceij ∈
d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and
time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time
period t, and it is set to 1 when i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. The variable X takes different
value depending on the column: in column (1) it is the across-MSA Herfindahl index of the citing technology, in column (2) it is the across-MSA Herfindahl index of
the cited technology, in column (3) it is median forward citation lag of the cited technology, in column (4) it is median backward citation lag of the citing technology.
In column (5) and (6) the sample includes government and university patents, in column (5) X is a dummy that takes value one if the citing patent belongs to a
university or government organisation, in column (6) it is a dummy that takes value one if the cited patent belongs to a university or government organisation. In
column (7) the sample includes self citations, the variable X is a dummy that takes value one if the citing firm F cited firm G are the same. When FiGjhk has positive
citations in at least one period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and fitted values.



Citing quantile Cited quantile
Dep. variable: citations

(1) (2)
log(travel time) × quantile 0.00 -0.151∗∗∗ -0.111∗∗∗

(0.058) (0.039)

log(travel time) × quantile 0.01 -0.078 -0.084
(0.114) (0.101)

log(travel time) × quantile 0.25 -0.081 -0.159∗
(0.103) (0.093)

log(travel time) × quantile 0.50 -0.139 -0.063
(0.091) (0.083)

log(travel time) × quantile 0.75 -0.262∗∗∗ -0.033
(0.079) (0.068)

log(travel time) × quantile 0.90 -0.029 -0.127∗∗
(0.066) (0.057)

log(travel time) × quantile 0.95 -0.001 -0.123∗∗∗
(0.037) (0.038)

log(travel time) × quantile 0.99 -0.130∗∗∗ -0.066∗
(0.035) (0.039)

log(travel time) × quantile 0.999 -0.070 -0.070
(0.045) (0.045)

N obs. effective 4, 703, 010 4, 703, 010
R2 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 14: Elasticity of citations to travel time: Heterogeneity (part 2)
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑q βq log(travel timeijt)1{quantileFh ∈ q} + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G in
location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and
it is set to 1 when i = j. quantileFh is the quantile of firm F in the distribution of firms within technology h, using
patents applied by F in h in the time period 1949-1953. Column (2) repeats the analysis using the quantile of the
cited firm G in technology k. When FiGjhk has positive citations in at least one period and no citations in another,
we attribute zero citations in the missing period. When FiGjhk has positive citations in at least one period and no
citations in another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional
location in parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation
between observed and fitted values.
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PPML
Citing technology Cited technology

Dep. variable: citations
(1) (2)

log(travel time) × Chemical −0.066 −0.093∗∗
(0.045) (0.045)

log(travel time) × Computers & Communications −0.100 −0.140∗
(0.079) (0.077)

log(travel time) × Drugs & Medical −0.053 −0.005
(0.162) (0.181)

log(travel time) × Electrical & Electronic −0.070 −0.054
(0.048) (0.046)

log(travel time) × Mechanical −0.080∗∗ −0.087∗∗∗
(0.031) (0.032)

log(travel time) × Others −0.147∗∗∗ −0.113∗∗
(0.045) (0.044)

N obs. effective 4, 703, 010 4, 703, 010
R2 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 16: Elasticity of citations to travel time by citing and cited technology
Part 1

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑tech βh 1{tech = h} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed
by establishment of firm F in location i, technology h and time period t, to patents filed by establishment of firm G
located in j, in technology k. 1{tech = h} is a dummy variable that takes value 1 when the citing technology h is equal
to technology tech. In column (2) the dummy is modified to 1{tech = k} such that it takes value 1 when the cited
technology k is equal to technology tech. travel timeijt is the travel time in minutes between location i and j at time
period t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least one period and no citations in
another, we attribute zero citations in the missing period. Standard errors clustered at the non-directional location
pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is computed as the squared
correlation between observed and fitted values.
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Cited
Citing Chemical Computers &

Communications
Drugs &
Medical

Electrical &
Electronic Mechanical Others

Chemical −0.092∗∗ 0.219 0.113 −0.299∗∗∗ −0.025 −0.070
(0.052) (0.262) (0.199) (0.094) (0.071) (0.068)

Computers & Communications −0.089 −0.306∗∗∗ −0.657 0.107 0.122 0.095
(0.259) (0.095) (0.976) (0.090) (0.149) (0.169)

Drugs & Medical 0.224 0.567 −0.278 −0.230 −0.334 0.358
(0.239) (1.205) (0.268) (0.561) (0.362) (0.323)

Electrical & Electronic 0.233∗∗ 0.171∗ −0.224 −0.102∗∗ 0.087 −0.063
(0.093) (0.096) (0.634) (0.056) (0.070) (0.079)

Mechanical −0.060 0.151 −0.152 0.106 −0.129∗∗∗ −0.032
(0.076) (0.145) (0.402) (0.082) (0.035) (0.056)

Others 0.042 0.173 0.204 0.052 0.019 −0.209∗∗∗
(0.074) (0.169) (0.274) (0.072) (0.053) (0.054)

∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 17: Elasticity of citations to travel time by citing and cited technology
Part 2

Column (1) shows the result of one single Poisson Pseudo Maximum Likelihood (PPML) estimation of
citationsFiGjhkt = exp [∑tech pair βhk 1{tech pair = hk} × log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt,
for citations of patents filed by establishment of firm F in location i, technology h and time period t, to patents filed by
establishment of firm G located in j, in technology k. 1{tech pair = hk} is a dummy variable that takes value 1 when
the citing technology h is equal to technology tech. In column (2) the dummy is modified to 1{tech = k} such that
it takes value 1 when the cited technology k is equal to technology tech. travel timeijt is the travel time in minutes
between location i and j at time period t, and it is set to 1 when i = j. When FiGjhk has positive citations in at least
one period and no citations in another, we attribute zero citations in the missing period. Standard errors clustered at
the non-directional location pair are presented in parenthesis (ij is the same non-directional location pair as ji). R2 is
computed as the squared correlation between observed and fitted values. The amount of observation in the effective
sample is 4,703,010.

E.1.2. IV PPML: first and second stage estimation
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First stage
OLS

Second stage
PPML

Dep. variable: log(travel time) citations
(1) (2)

log(travel time fix routes) 0.951∗∗∗
(0.039)

log(travel time) −0.152∗∗∗
(0.029)

residual 0.094∗∗∗
(0.035)

N obs. effective 10, 106, 940 4, 703, 010
R2 0.99 0.88
Within R2 0.38
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 18: Elasticity of citations to travel time: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of citationsFiGjhkt =
exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, where log(travel timeijt) is instru-
mented with log(instrumental travel timeijt) . Column (1) shows the results of the first stage regression
estimated by OLS. Column (2) shows the result of the second stage regression estimated by Poisson
Pseudo Maximum Likelihood , including the estimated residuals of the first stage as controls. The
number of observations in the second stage estimation is smaller due to not being able to identify fixed
effects that are required in PPML estimation.
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OLS First stage
0-300km

OLS First stage
300-1,000km

OLS First stage
1,000-2,000km

OLS First stage
+2,000km

Second stage
PPML

Dep. variable: log(travel time) citations
(1) (2) (3) (4) (5)

log(travel time fix routes) × 0-300km 0.278∗∗ 0.073 0.024 0.040∗
(0.122) (0.057) (0.026) (0.022)

log(travel time fix routes) × 300-1,000km −0.103∗∗∗ 1.113∗∗∗ −0.013 0.010
(0.032) (0.041) (0.011) (0.011)

log(travel time fix routes) × 1,000-2,000km −0.064∗∗∗ −0.052∗∗∗ 1.059∗∗∗ 0.017∗
(0.024) (0.020) (0.044) (0.009)

log(travel time fix routes) × +2,000km −0.058∗∗∗ −0.046∗∗∗ −0.020∗∗ 1.097∗∗∗
(0.022) (0.017) (0.010) (0.018)

log(travel time) × 0-300km −0.076
(0.221)

log(travel time) × 300-1,000km −0.134∗∗∗
(0.044)

log(travel time) × 1,000-2,000km −0.112∗∗
(0.047)

log(travel time) × +2,000km −0.203∗∗∗
(0.043)

residual × 0-300km 0.100
(0.196)

residual × 300-1,000km 0.045
(0.053)

residual × 1,000-2,000km 0.026
(0.069)

residual × +2,000km 0.043
(0.078)

N obs. effective 10, 106, 940 10, 106, 940 10, 106, 940 10, 106, 940 4, 703, 010
R2 0.99 0.99 0.99 0.99 0.88
Within R2 0.04 0.46 0.80 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 19: Elasticity of citations to travel time: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of Poisson Pseudo Maxi-
mum Likelihood of citationsFiGjhkt = exp [∑d βd × 1{distanceij ∈ d} × log(travel timeijt) + FEFiGjhk +
FEFiht + FEGjkt] × εFiGjhkt, where 1{distanceij ∈ d} × log(travel timeijt) is instrumented with
1{distanceij ∈ d} × log(instrumental travel timeijt) . Given that there are 4 distance segments d there
are 4 first stages. Columns (1) to (4) show the results of the first stage regressions which are estimated
by OLS. Coefficients of the 4 interactions of the instrument can be identified due to the presence of
the fixed effects, e.g. after demeaning by fixed effects there is residual variation that allows to identify
the 4 coefficients in each regression of the first stage. Column (5) shows the result of the second stage
regression estimated by PPML, including the estimated residuals of the first stage as controls. The
number of observations in the second stage estimation is smaller due to not being able to identify fixed
effects that are required in PPML estimation.
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E.1.3. Robustness

Sample of establishments

During the time period there was entry and exit of research establishments that was not

uniform across locations. We may then think that the change in diffusion of knowledge

is only consequence of the change in the geographical location of innovation. To test

this possibility, in Table ?? we estimate the baseline regression 3 with different samples.

In column (1) we include the baseline results.98 In column (2) we use only citing estab-

lishments Fi that filed patents during the initial time period 1949-1953. In column (3)

we further restrict the sample to both citing establishments Fi and cited establishments

Gj that filed patents in 1949-1953.99 We find that the coefficient at more than 2,000km re-

mains comparable to the one in the baseline regression, statistically significant at the 1%.

Estimation of log-log gravity equation

We modify equation 3 to have a log-log version:

log(citationsFiGjhkt) = κ log(travel timeijt)+ FEFiGjhk + FEFiht + FEGjkt + νFiGjhkt (14)

Results by OLS estimation are presented in Table 20.

98Coefficients are not bias corrected.
99We require Fi and Gj to have positive amount of patents applied during 1949-1953. However, those

establishments need not to have cited each other.
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PPML OLS
Dep. variable: citations log(citations)

(1) (2) (3) (4)
log(travel time) −0.083∗∗∗ -0.052

(0.019) (0.040)

log(travel time) × 0-300 km 0.019 0.063
(0.036) (0.069)

log(travel time) × 300-1,000 km −0.089∗∗∗ -0.072
(0.023) (0.046)

log(travel time) × 1,000-2,000 km −0.094∗∗∗ -0.097
(0.033) (0.072)

log(travel time) × +2,000 km −0.169∗∗∗ -0.161∗
(0.039) (0.084)

N obs. effective 4, 703, 010 4, 703, 010 2,643,024 2,643,024
R2 0.88 0.88 0.99 0.99
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 20: Elasticity of citations to travel time: PPML and OLS
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) shows the result of OLS
estimation of log(citationsFiGjhkt) = κ log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt + νFiGjhkt. The coefficients and
standard errors in columns (1) and (2) are jackknife bias-corrected. In columns (3) and (4) standard errors are clustered
at the MSA-pair. R2 is computed as the squared correlation between observed and fitted values.
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Ticket prices

During the period of analysis ticket prices were set by the Civil Aeronautics Board, so

airlines could not set prices of their own tickets. Some airlines included a sample of

prices in the last page of their booklet of flight schedules a sample of prices, which we

digitized. We have digitized American Airlines 1951, 1961, 1966; TWA 1951 and United

Airlines 1956 and 1961.100. The sample includes prices for 11,590 directional airport

pair years. We document multiple facts about prices.

First, prices were set in the form of an intercept plus a variable increment depending

on distance between origin and destination (until 1962-1963). A linear regression with

an intercept and a slope estimated separately for each year (including 1966), service

class (first class or coach service), and aircraft type (propeller or jet) gives a R2 of 0.98

or higher in each regression, with an average R2 of 0.993.

Second, all airlines operating within the same route charged exactly the same price.

In 1951, in our digitized price data we have 432 airport pairs in which both American

Airlines and TWA were operating and reported the price for first class service. 94% of

those airport pairs had exactly the same price in both airlines.

Third, ticket prices of flights operated by jet airplanes had a surcharge of around 6%

on top of the one operated by propeller airplanes.

Fourth, the change in prices over time had a similar pattern until 1961: a stronger

increase in short distances (probably due to an increase in fixed costs of take-off and

landing, although not reflected in the intercept of the linear regressions), and a relatively

constant increase for flights between airports more than 1,000 km apart. In the period

1961 to 1966 we observe a drop in prices of around 20% for routes of more than 1,000km

distance, breaking the linearity of prices in distance previously observed. We had vi-

100The sample of prices digitized was limited due to data availability.
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sually inspected price tables and detected that the drop in prices happened in 1962-1963.

Figure 45 shows prices for first class service by year and aircraft type, deflated by

the consumer price index to 1951 values. Figure 46 presents the percentage change in

deflated prices of first class service. Both figures show the previous facts: prices are

generally linear in distance until 1966 in which we observe a break after 1,000 km.

Figure 45: Flight ticket prices, deflated by CPI Figure 46: Change flight ticket prices, deflated by
CPI

We convert our sample of prices at the airport-pair level to prices of the population of

MSA-pairs as follows: first, we obtain a pricing function that can flexibly approximate

prices by regressing deflated prices on a cubic polynomial of distance separately for

each year. We use prices of first class service for all years, propeller aircraft for 1951 and

1956 and jet aircraft for 1961 and 1966. Second, we predict prices for each MSA-pair

and year using the MSA-pair distance and the year’s estimated regression.

Highway travel time

Taylor Jaworski and Carl Kitchens have graciously shared with us data on county-to-

county highway travel time and nominal travel costs for 1950, 1960 and 1970. Travel
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time is constructed using maximum speed limit in each highway segment and year.

Travel costs uses, for each year, travel time, highway distance, truck driver’s wage and

petrol costs. See Jaworski and Kitchens (2019) for details. The dataset is constructed

using 2010 county boundaries and contains county centroids. We converted it to MSA-

to-MSA by matching counties’ centroids to 1950 MSAs using the shape file from Manson

et al. (2020). We take the minimum travel time and minimum travel costs among all

county pairs that belong to the same MSA pair. We convert nominal travel costs to

1950 real travel costs deflating by the consumer price index. We convert 1950, 1960 and

1970 travel times and travel costs to 1951, 1956, 1961 and 1966 by linearly interpolat-

ing (e.g. travel timeij,1951 = travel timeij,1950 × 1960−1951
10 + travel timeij,1960 × 1951−1950

10 ).

The within MSA-pair correlation of the 1951-1966 change in travel time by highway

and airplane is 0.068 for all MSA-pairs, and -0.011 for MSA-pairs more than 2,000 km

apart. Figure 47 presents the MSA-pair 1951-1966 change in travel time by highway and

airplane, where for exposition we only present MSA-pairs that had a reduction in travel

time by both means of transport. Estimating a linear regression of change in air travel

time on the change in highway travel time gives a slope of -0.02 not statistically different

from zero, with a R2 of 0.00005.101 Figure 48 repeats the exercise where MSA-pairs

are weighted by the amount of establishment-technology pairs used to estimate the

elasticity of citations to travel time (equation (3)). In this case the estimated regression

has a slope of 0.73 statistically significant at the 1% level and a R2 of 0.09.102

In Tables 4 and 21 we present the results of adding highway travel time as control.

The low correlation between the change in travel time by highway and airplane implies

that the estimated elasticity of citations to air travel time remains almost unchanged,

1018.7% of MSA-pairs had an increase in travel time either by highway or by airplane. The regression
with all MSA-pairs has a slope of 0.60 significant at the 1% level. However, the R2 of the regression
remains very low: 0.0046.

102With all MSA-pairs the slope is 1.01 statistically significant at the 1% level and the R2 is 0.04.
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relative to the baseline estimation.103

Figure 47: Change travel time by airplane and
highway 1951-1966

Figure 48: Change travel time by airplane and
highway 1951-1966, weighted

103In order to perform a test of statistical difference of coefficients we would need to compute the
covariance between the two regressions. Assuming the covariance is zero, in columns (1) and (2) 21
the coefficients of air travel time at +2,000km are not significantly different.
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PPML
Dep. variable: citations

(1) (2) (3) (4) (5) (6) (7) (8)
log(travel time) × 0-300km 0.0213 0.0276 0.0198 0.0318 0.0252 0.0349 0.0283 0.0313

(0.0388) (0.0385) (0.0391) (0.0393) (0.0389) (0.0391) (0.0396) (0.0393)

log(travel time) × 300-1,000km -0.0990∗∗∗ -0.1040∗∗∗ -0.0935∗∗∗ -0.0745∗∗ -0.1014∗∗∗ -0.0857∗∗∗ -0.0748∗∗ -0.0861∗∗∗
(0.0269) (0.0292) (0.0265) (0.0303) (0.0290) (0.0312) (0.0303) (0.0312)

log(travel time) × 1000-2,000km -0.0928∗∗ -0.1155∗∗ -0.0710∗ -0.0395 -0.0948∗ -0.0498 -0.0318 -0.0435
(0.0418) (0.0485) (0.0423) (0.0523) (0.0502) (0.0573) (0.0520) (0.0576)

log(travel time) × +2,000km -0.1848∗∗∗ -0.1761∗∗∗ -0.1724∗∗∗ -0.1238∗∗ -0.1658∗∗∗ -0.1052∗ -0.1236∗∗ -0.1041∗
(0.0492) (0.0531) (0.0498) (0.0587) (0.0542) (0.0607) (0.0590) (0.0609)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88

Controls:
log(highway time) - Yes - - Yes Yes - Yes
log(telephone share) × time - - Yes - Yes - Yes Yes
log(distance) × time - - - Yes - Yes Yes Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 21: Elasticity of citations to travel time: additional controls
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) + ∑d αd 1{distanceij ∈ d}1{XFiGjhkt} log(travel timeijt) + FEFiGjhk +

FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and
time period t, to patents filed by establishment of firm G in location j and technology k. travel timeijt is the travel
time in minutes between location i and j at time period t, and it is set to 1 when i = j. d are distance intervals:
[0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Relative to (1), columns (2) to (8) contain
additional controls. Log highway time between i and j changes in every time period t. The log mean share of
households with telephone line in ij pair interacted in 1960 is interacted with a time dummy. Log distance ij is
interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another, we
attribute zero citations in the missing period. Standard errors clustered at the non-directional location in parentheses
(ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between observed and
fitted values.

Frequency adjusted travel time

The frequency of flights may have changed simultaneously with the introduction of jet

airplanes. The change in travel time could then be consequence of higher frequency

rather than changes in airplanes’ speed. Given that some MSA pairs are connected

indirectly (with connecting flights), accounting for frequency is not straight forward:

the frequency of each leg of the flight route matters (actually, it is not only frequency of

each leg but also the synchronization among all potential legs). In order to take into

account potential changes in the frequency of flights we computed the daily average

travel time. This travel time is the average across all fastest travel times if the passenger
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was to depart at each full hour (1am, 2am, ..., 1pm, 2pm, etc.). The computation of this

travel time includes the waiting time that is affected by frequency: the time until first

departure and layover time of each connecting flight. Hence, the daily average travel

time is a frequency-adjusted travel time: changes in the daily average travel time that

are larger than in the fastest travel time denote that frequency of flights increased and

therefore there is less waiting time. If we observe the reverse that means that frequency

did not improve as much as the speed of airplanes.

Figure 49 shows the within MSA-pair decrease in the fastest travel time and the daily

average travel time.104 Both measures of travel time follow a similar pattern: slight

decrease in 1956, a stronger decrease in 1961 especially for long distance routes, and

a further decline in 1966. However, we observe that the decrease of the fastest travel

time is on average larger than the one of the daily average travel time: the frequency of

flights, if any, attenuated the potential decrease in travel time from the improvements

in airplanes’ speed. This observation is also in line with a comparison of the fastest

travel time with and without layover time (Figure 28 in the Appendix of the paper):

layover time attenuated the change in travel time.

In table 22 we estimated the elasticity of citations to travel time using first the fastest

travel time (baseline, columns 1 and 2) and the daily average travel time (columns 3

and 4). The estimated elasticity is similar using both measures, which gives confidence

that our results are not driven by changes in the frequency of flights.

104The within MSA-pair correlation of the (1951-1966) change in fastest travel time and the change daily
average travel time is 0.60.
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Figure 49: Change in MSAs travel time: fastest travel time and daily average travel
time
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PPML
not bias-corrected

Dep. variable: citations
(1) (2) (3) (4)

log(travel time) −0.088∗∗∗
(0.024)

log(travel time) × 0-300km 0.021
(0.039)

log(travel time) × 300-1,000km −0.099∗∗
(0.027)

log(travel time) × 1000-2,000km −0.093∗∗
(0.042)

log(travel time) × +2,000km −0.185∗∗∗
(0.049)

log(travel time daily avg) −0.100∗∗∗
(0.039)

log(travel time daily avg) × 0-300km 0.034
(0.037)

log(travel time daily avg) × 300-1,000km −0.142∗∗∗
(0.047)

log(travel time daily avg) × 1000-2,000km −0.170∗∗∗
(0.072)

log(travel time daily avg) × +2,000km −0.236∗∗∗
(0.064)

N obs. effective 4, 703, 010 4, 703, 010 4, 703, 010 4, 703, 010
R2 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 22: Elasticity of citations to travel time: daily average travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) use the daily average travel
time, which is computed as the average of the fastest travel time departing at every full hour (the average across
all 24 potential departing times). Standard errors clustered at the non-directional location are presented between
parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between
observed and fitted values.

E.2. Creation of knowledge

E.2.1. Heterogeneous effects

A57



Dependent Variable: Patents
Patents

quality weighted
(1) (2) (3) (4)

log(knowledge access) 10.1∗∗∗ 12.3∗∗∗
(3.7) (4.0)

log(knowledge access quality weighted) 8.0∗∗ 10.0∗∗∗
(3.3) (3.6)

R2 0.85 0.85 0.86 0.86
N obs. effective 991,480 991,480 991,284 991,284
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 23: Effect of knowledge access on patents, quality weighted
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp[ρ log(KAiht) + FEFih + FEit + FEht]× ξFiht, for patents filed by establishment of firm F in location i, technology h
and time period t. KA iht is knowledge access of establishments in location i technology h and time period t. Columns
(1) and (2) use number of patents as dependent variable while columns (3) and (4) quality-weighted patents. Columns
(1) and (3) use log(KAiht) as explanatory variable while columns (2) and (4) use a quality weighted log(KAiht).
Quality weights are the 5-year percentile of quality measure after demeaning by year fixed effects computed in
Kelly et al. (2021). Weighting by the 10-year percentile of quality gives similar results. Standard errors clustered at
the location-technology level ih are presented in parentheses. R2 is computed as the squared correlation between
observed and fitted values.

E.2.2. IV PPML: centering instrumental knowledge access

The objective of the recentered instrument is to clean any non-random variation that

may be mechanically introduced due to geography. Locations that are geographically

far from the initial innovation centers are more likely to have a larger increase in knowl-

edge access with the roll out of jet airplanes, in any realization of the flight network. In

order to purge out this potentially non-random variation, we compute the expected

value of the instrument considering multiple alternative flight networks and subtract it

from the realized instrument.

We construct the expected instrument E[log(K̃Aiht)] as follows:

1. Count the amount of airport-pairs connected by a non-stop flight in 1951, label

this the number of 1951 connections.

2. Set a new seed number for random draws.

3. For each unique origin airport present in 1951, create a counterfactual connection

by drawing a random destination airport (different to the origin) present in 1951.
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Repeat as many times until the amount of unique counterfactual connections is

equal to the number of 1951 connections. As number of 1951 connections is larger

than the number of origins and destinations, some origins and destinations will

be repeated.

4. Check if all 1951 origin and destination airports are present in the randomized

connections. Some destinations may not be present due to the random draws.

If some destination (origin) is missing, drop a counterfactual connection of a

destination (origin) that has at least two origins (destinations). Draw a new

random connection for the missing destination (origin). Repeat this step until all

origins and destinations are present in the counterfactual network.

5. Check if the counterfactual network is a connected set (i.e. it would be possible to

route from any airport to any other airport through intermediary connections). If

it is not a connected set, drop this iteration of the counterfactual network and go

back to step 2.

6. Predict flight duration of each counterfactual connection in each year using

airport-to-airport distance and the estimated intercept and slope of each year

7. Compute the fastest travel time between each airport pair, directly and indirectly

connected

8. Match airports to MSA and take minimum travel between MSA-pairs in each year

9. Repeat steps 2 to 9 for 2,000 times

10. With each counterfactual network, compute the counterfactual knowledge access

of each MSA-technology-year.

11. Obtain the expected instrument E[log(K̃Aiht)]: within each MSA-technology-year,

compute the across-counterfactual network average of the log counterfactual

knowledge access
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We then recenter the instrument as follows:

log(K̃Aiht)centered = log(K̃Aiht)− E[log(K̃Aiht)] (15)

E.2.3. IV PPML: first and second stage estimation, non-centered instrument

First stage
OLS

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2)

log(knowledge access instrument) 1.01∗∗∗
(0.032)

log(knowledge access) 11.24∗
(6.35)

residual −2.31
(7.20)

N obs. effective 991, 480 91, 480
R2 0.99 0.85
Within R2 0.53
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 24: Elasticity of patents to knowledge access: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih +

FEit + FEht] × ξFiht, where log(KAiht) is instrumented with log(K̃Aiht) . Column (1) shows the results of the first stage
regression estimated by OLS. Column (2) shows the result of the second stage regression estimated by Poisson Pseudo
Maximum Likelihood , including the estimated residuals of the first stage as controls. The number of observations
in the second stage estimation is smaller due to not being able to identify fixed effects that are required in PPML
estimation.
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OLS First stage
reference quartile

OLS First stage
3rd quartile

OLS First stage
2nd quartile

OLS First stage
1st quartile

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2) (3) (4) (5)

log(knowledge access instrument) 1.00∗∗∗ 0.01 0.03 0.00
(0.03) (0.06) (0.03) (0.01)

log(knowledge access instrument) × 3rd quartile 0.01∗ 1.11∗∗∗ −0.00 −0.00
(0.004) (0.03) (0.01) (0.01)

log(knowledge access instrument) × 2nd quartile 0.00 −0.01 1.11∗∗∗ −0.00
(0.01) (0.04) (0.03) (0.01)

log(knowledge access instrument) × 1st quartile 0.01 −0.00 −0.04 1.15∗∗∗
(0.01) (0.04) (0.04) (0.04)

log(knowledge access) 10.26
(6.38)

log(knowledge access) × 3rd quartile 2.32∗∗∗
(0.66)

log(knowledge access) × 2nd quartile 4.21∗∗∗
(0.84)

log(knowledge access) × 1st quartile 5.77∗∗∗
(1.11)

residual −2.25
(7.27)

residual × 3rd quartile −2.55
(1.59)

residual × 2nd quartile −4.32∗∗
(1.97)

residual × 1st quartile −8.27∗∗
(3.28)

N obs. effective 991, 480 991, 480 991, 480 991, 480 991, 480
R2 1.00 1.00 1.00 1.00 0.85
Within R2 0.53 0.89 0.90 0.90
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 25: Elasticity of patents to knowledge access: first and second stage IV PPML
The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [∑q ρq × 1{quartileih =

q} × log(KAiht) + FEFih + FEit + FEht] × ξFiht, where log(KAiht) is instrumented with log(K̃Aiht) . Column (1) to (4)
show the results of the first stage regression estimated by OLS. Coefficients of the 4 interactions of the instrument can
be identified due to the presence of the fixed effects, e.g. after demeaning by fixed effects there is residual variation
that allows to identify the 4 coefficients in each regression of the first stage. Column (5) shows the result of the second
stage regression estimated by Poisson Pseudo Maximum Likelihood, including the estimated residuals of the first
stage as controls.
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E.2.4. IV PPML: first and second stage estimation, centered instrument

First stage
OLS

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2)

centered log(knowledge access instrument) 1.19∗∗∗
(0.05)

log(knowledge access) 9.86∗
(5.73)

residual 0.57
(6.41)

N obs. effective 991, 480 91, 480
R2 0.99 0.85
Within R2 0.51
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 26: Elasticity of patents to knowledge access: first and second stage centered IV
PPML

The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih +

FEit + FEht] × ξFiht, where log(KAiht) is instrumented with centered log(K̃Aiht) . Column (1) shows the results of
the first stage regression estimated by OLS. Column (2) shows the result of the second stage regression estimated by
Poisson Pseudo Maximum Likelihood , including the estimated residuals of the first stage as controls. The number of
observations in the second stage estimation is smaller due to not being able to identify fixed effects that are required
in PPML estimation.

A62



OLS First stage
reference quartile

OLS First stage
3rd quartile

OLS First stage
2nd quartile

OLS First stage
1st quartile

Second stage
PPML

Dep. variable: log(knowledge access) Patents
(1) (2) (3) (4) (5)

centered log(knowledge access instrument) 1.19∗∗∗ 0.34 0.29∗∗ 0.01
(0.05) (0.29) (0.14) (0.03)

centered log(knowledge access instrument) × 3rd quartile 0.00 -1.59∗∗∗ 0.07∗∗ 0.00
(0.01) (0.20) (0.03) (0.00)

centered log(knowledge access instrument) × 2nd quartile 0.01 0.10 -1.52∗∗∗ 0.03
(0.01) (0.24) (0.19) (0.02)

centered log(knowledge access instrument) × 1st quartile 0.00 0.09 0.47∗∗ -1.93∗∗∗
(0.02) (0.23) (0.22) (0.19)

log(knowledge access) 7.01
(5.83)

log(knowledge access) × 3rd quartile 3.99∗∗∗
(1.25)

log(knowledge access) × 2nd quartile 7.57∗∗∗
(2.30)

log(knowledge access) × 1st quartile 9.03∗∗∗
(2.46)

residual 3.25
(6.53)

residual × 3rd quartile −2.91
(1.16)

residual × 2nd quartile −5.51∗∗
(2.29)

residual × 1st quartile −6.01∗∗∗
(2.30)

N obs. effective 991, 480 991, 480 991, 480 991, 480 991, 480
R2 1.00 1.00 1.00 1.00 0.85
Within R2 0.51 0.27 0.30 0.43
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 27: Elasticity of patents to knowledge access: first and second stage centered IV
PPML

The table presents the results of 2-step instrumental variables estimation of PatentsFiht = exp [∑q ρq × 1{quartileih =

q} × log(KAiht) + FEFih + FEit + FEht] × ξFiht, where log(KAiht) is instrumented with centered log(K̃Aiht) . Column
(1) to (4) show the results of the first stage regression estimated by OLS. Coefficients of the 4 interactions of the
instrument can be identified due to the presence of the fixed effects, e.g. after demeaning by fixed effects there is
residual variation that allows to identify the 4 coefficients in each regression of the first stage. Column (5) shows the
result of the second stage regression estimated by Poisson Pseudo Maximum Likelihood, including the estimated
residuals of the first stage as controls.
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E.2.5. Robustness
Baseline Quartile

absolute
Quartile

per capita
Dependent Variable: Patents

(1) (2) (3)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 7.77∗∗
(3.66) (3.69) (3.70)

log(knowledge access) × quartile 0.50 2.05∗∗∗ 0.75∗∗
(0.58) (0.34)

log(knowledge access) × quartile 0.25 3.80∗∗∗ 1.58∗∗∗
(0.90) (0.50)

log(knowledge access) × quartile 0.00 5.00∗∗∗ 4.03∗∗∗
(1.30) (0.77)

N obs. effective 991,480 991,480 991,480
R2 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 28: Elasticity of new patents to knowledge access: absolute and per capita MSA
innovativeness

Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
within technology using the absolute level of patents in the MSA-technology in 1949-1953. Column (3) computes the
quartile of innovativeness using patents per capita in the MSA-technology in 1949-1953 using 1950 population. Higher
quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Standard
errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation
between observed and fitted values.
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PPML β
by distance +300km +1,000km +2,000km

Dependent Variable: Patents
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 18.17∗∗∗ 16.50∗∗ 10.09∗∗ 8.70∗ 18.82∗∗∗ 19.08∗∗∗ 12.70 10.26
(3.66) (3.69) (4.63) (4.76) (4.66) (4.67) (5.82) (5.74) (8.18) (7.92)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 2.70∗∗∗ 2.12∗∗∗ 2.08∗∗∗ 1.94∗∗∗
(0.58) (0.84) (0.58) (0.53) (0.49)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 5.96∗∗∗ 4.19∗∗∗ 3.97∗∗∗ 3.64∗∗∗
(0.90) (1.42) (0.88) (0.81) (0.73)

log(knowledge access) × 1st quartile 5.00∗∗∗ 8.94∗∗∗ 5.49∗∗∗ 5.28∗∗∗ 4.68∗∗∗
(1.30) (1.97) (1.25) (1.23) (1.07)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 29: Elasticity of new patents to knowledge access, varying beta or distance.
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed
using patents in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is
used as reference category. Relative to columns (1) and (2), columns (3) and (4) compute Knowledge Access using
four distance-specific β parameter according to distance bins between i and j. The bins are [0km, 300km], (300km,
1000km], (1000km, 2000km], +2,000km. Columns (5) to (10) use the same β as column (1) and (2), but computing
Knowledge Access with a truncated sample of j that are further than a certain distance threshold from i. Standard
errors clustered at the location-technology ih are presented in parentheses. R2 is computed as the squared correlation
between observed and fitted values.
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PPML OLS
Dependent Variable: Patents log(Patents)

(1) (2) (3) (4)

log(knowledge access) 10.14∗∗∗ 9.36∗∗ 6.83∗ 6.27∗
(3.66) (3.69) (3.19) (3.20)

log(knowledge access) × 3rd quartile 2.05∗∗∗ 0.92∗
(0.58) (0.51)

log(knowledge access) × 2nd quartile 3.80∗∗∗ 2.64∗∗
(0.90) (1.03)

log(knowledge access) × 1st quartile 5.00∗∗∗ 3.82∗∗
(1.30) (1.79)

N obs. effective 991,480 991,480 300,539 300,539
R2 0.85 0.85 0.87 0.87
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 30: Elasticity of new patents to knowledge access: PPML and OLS
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period
t. Column (3) estimates log(Patents)Fiht = ρ log(KAiht) + FEFih + FEit + FEht + ξFiht. Columns (2) and (4) open
the coefficient ρ by the quartile of innovativeness of location i within technology h, computed within technology
using the absolute level of patents in the MSA-technology in 1949-1953. Higher quartile indicates higher initial level
of innovativeness. The fourth quartile is used as reference category. Difference in amount of observations is due
to dropping zeros in columns (3) and (4). Standard errors clustered at the location-technology ih are presented in
parentheses. R2 is computed as the squared correlation between observed and fitted values.
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Access to capital

We construct four measures of access to capital using 1949-1953 market capitalization

of firms listed in the stock market. The four measures are similar in their essence but

differ in the computation of a firm’s technology and the firm’s location. The measure is

computed as follows:

capital accessiht = ∑
k

ψhk ∑
j, j ̸=i

Capital stockjk,t=1951 × travel timeξ
ijt (16)

where Capital stockjk,t=1951 is a proxy for the capital which is specific to technology k

located in j at the initial time period 1951. ψhk is an input-output weight of capital flows

and ξ is the elasticity of capital flows between to travel time. As a proxy for capital we

use market capitalization of firms.

We construct four measures of capital accessiht which differ on: (i) the way we define

the allocation of the firm’s capital to each location (either using all inventors’ locations

or only the assigned headquarters), and (ii) the way we allocate a firm’s capital across

technologies (using the share of a technology within the firm, or relative to the national

share of that technology). We use COMPUSTAT as our source of data for market

capitalization.

We proceed as follows:

1. Use share’s market price at closure calendar year multiplied by the number shares

outstanding. We use the variables prcc c and csho to maximize coverage of firms

given that other variables have missing value for many firms.

2. Take the yearly average market capitalization to maximize coverage (many firms

have missing in a certain year). This step potentially introduces measurement

error due to changes in total stock market capitalization but allows us to increase

the amount of firms included in the sample.

3. Determine a firm’s MSA using patent inventor location. Two ways to determine
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the location, 1. only HQ location, 2. all locations where the firm had inventors

applying for patents in 1949-1953

4. Determine the share of each technology firm’s technology using patent technology.

Two ways to determine the share oftechnology: 1. the share of each tech within

firm + share within firm relative to national share

5. In the absence of data on a capital input-output weight, assume it is the same as

the technology input-output weight, i.e. ψhk = ωhk

6. In the absence of data on the elasticity of capital flows to travel time assume

ξ = −1

The four measures of access to capital are as follows:

1. Attribute all capital to headquarters and use the absolute share of each technology

in the firm

2. Attribute all capital to headquarters and use the share of each technology in the

firm relative to the national share

3. Attribute capital to establishments using their pat share and use the absolute

share of each technology in the firm

4. Attribute capital to establishments using their pat share and use the share of each

technology in the firm relative to the national share

Table ?? shows the results of estimating the elasticity of new patents to knowledge

access while at the same time controlling for capital access.

Sensitivity to β

Indirectly connected MSAs

If the 1951 flight network was constructed in order to connect city pairs that would see

future growth in citations, we can alleviate this endogeneity concern by focusing only
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β ρ β × ρ
Predicted yearly

growth p.p.
Share yearly

growth explained
Predicted yearly

growth differential p.p.
Share yearly growth

differential explained
-0.186 10.14 -1.89 3.47 0.78 1.1 0.21
-0.1 19.35 -1.94 3.5 0.78 1.07 0.2
-0.2 9.4 -1.88 3.47 0.78 1.1 0.21
-0.3 6.1 -1.83 3.45 0.77 1.14 0.22
-0.4 4.48 -1.79 3.44 0.77 1.16 0.22
-0.5 3.52 -1.76 3.44 0.77 1.19 0.23
-0.6 2.91 -1.74 3.45 0.77 1.2 0.23
-0.7 2.48 -1.73 3.47 0.78 1.22 0.23
-0.8 2.17 -1.73 3.5 0.78 1.22 0.23
-0.9 1.93 -1.73 3.52 0.79 1.24 0.24
-1 1.72 -1.72 3.51 0.79 1.28 0.24
-2 0.58 -1.16 2.8 0.63 1.55 0.3
-5 0.04 -0.19 1.19 0.27 3.65 0.7
-8 0.09 -0.76 8.22 1.84 6.96 1.33

-10 0.11 -1.08 15.16 3.4 8.19 1.56
-20 0.13 -2.63 69.8 15.65 21.66 4.14
-50 0.16 -8.22 531.34 119.16 219.49 41.94

-100 0.12 -12.33 5428.85 1217.49 2971.74 567.91

Table 32: Effect of knowledge access on new patents: varying the value of elasticity of
knowledge diffusion

on indirectly connected pairs.

Table 33 presents PPML regressions not bias-corrected. Columns (1) and (2) are

the baseline regressions (all MSA-pairs), columns (3) and (4) drop MSA-pairs that

are ever connected with one leg (a non-stop flight), and columns (5) and (6) drop

MSA-pairs that are ever connected with one flight number. The difference between

non-stop and one flight number is that one flight number could serve multiple MSAs

by making intermediate stops.105 The estimated coefficients are in the ballpark of the

initial estimates, especially for +2,000km, providing evidence that it is reasonable to

use the pre-existing network as the baseline to construct the instrument.

105For example, in 1951 NYC-LA was connected with one flight number that included one stop in Chicago,
that is two legs but only one flight number: passengers did not have to change airplanes).
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PPML
not bias-corrected

Dep. variable: citations
(1) (2) (3) (4) (5) (6)

log(travel time) −0.088∗∗∗ −0.202∗∗∗ −0.241∗∗∗
(0.024) (0.051) (0.061)

log(travel time) × 0-300km 0.021 −0.237∗∗∗ −0.410∗∗
(0.039) (0.116) (0.165)

log(travel time) × 300-1,000km −0.099∗∗ −0.147∗ −0.210∗∗
(0.027) (0.081) (0.095)

log(travel time) × 1000-2,000km −0.093∗∗ −0.157∗ −0.216∗∗
(0.042) (0.092) (0.109)

log(travel time) × +2,000km −0.185∗∗∗ −0.297∗∗∗ −0.242∗∗∗
(0.049) (0.085) (0.090)

N obs. effective 4, 703, 010 4, 703, 010 1, 735, 427 1, 735, 427 1, 396, 393 1, 396, 393
R2 0.88 0.88 0.94 0.94 0.94 0.94
Observation selection:
All X X
Discard one leg X X
Discard one flight number X X
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 33: Elasticity of citations to travel time: dropping directly connected MSA pairs
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) discards all ij that are ever
connected with one leg (non-stop flight), while columns (5) and (6) discard all ij that are ever connected with one
flight number. The difference between non-stop and one flight number is that one flight number could serve multiple
MSAs by making intermediate stops. Standard errors clustered at the non-directional location are presented between
parentheses (ij is the same non-directional location pair as ji). R2 is computed as the squared correlation between
observed and fitted values.
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