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1 Introduction

The geography of innovation in the United States underwent a radical shift after World

War II. In 1950, the number of patents per capita in the South and the West was less

than half as high as in the Northeast and the Midwest. By 2010, this difference had

disappeared completely with the emergence of prominent technology clusters in the

South and the West. Developing technology clusters is of great interest to policy makers

as this may have strong effects on the local economy (Moretti (2010), Moretti and

Thulin (2013)). While the literature has emphasized knowledge spillovers as one of the

drivers of innovation (Storper and Venables (2004), Furman and Stern (2011), Acemoglu

et al. (2016)), highlighting the role of physical proximity for facilitating face to face

interactions (Glaeser (2011), Carlino and Kerr (2015), Atkin et al. (2022)), there is scarce

evidence on the effect of infrastructure on knowledge spillovers and the geography of

innovation (Agrawal et al. (2017), Chatterji et al. (2014)).

This paper provides new evidence on this question by exploiting the nationwide

rollout of jet airplanes in the United States during the 1950s and 1960s, which led to a

large reduction in air travel time. For instance, travel time between New York City and

San Francisco decreased from 11 hours in 1951 to 5 hours and 35 minutes in 1966. This

substantial reduction in travel time facilitated long-distance face-to-face interactions.

We find that the decrease in travel time led to an increase in the diffusion of knowl-

edge, which we convert into an increase in access to knowledge. Next, we find that the

increase in access to knowledge spurred an increase in the creation of new knowledge.

The results provide evidence that jet airplanes drove innovation convergence across

locations and contributed to the shift in innovation activity towards the South and the

West of the United States.

Our findings align with historical accounts from this period, underscoring the im-

portance of face-to-face interactions for knowledge diffusion and creation. Researchers

frequently traveled across the country to meet in person with researchers of other

companies to share their advances and learn from each other.1

1Gertner (2013), pages 251–252, illustrates this phenomenon based on interviews with inventors from
this era. For example, researchers involved in the development of transistors and integrated circuits
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We begin by constructing a new dataset of the flight network in the United States

during the 1950s and 1960s. We digitize historical flight schedules of the major interstate

airlines operating during this period and obtain the fastest routes between every two

airports in the network.2 We document that between 1951 and 1966, travel time

decreased on average by 29%, with a 41% average decrease for Metropolitan Statistical

Areas (MSAs) located more than 2,000 km apart.3

This nationwide shock was arguably exogenous as it happened in a strictly regulated

environment. We decompose the change in travel time and find that 90% of the

reduction was due to improvements in aircraft speed, while 10% resulted from changes

in flight routes. This is consistent with the fact that the Civil Aeronautics Board (CAB)

imposed strong regulations on the interstate airline market during this period. To

promote a stable airline industry, the CAB set ticket prices and restricted airlines’ entry

into new or existing routes. Hence, the reduction in travel time occurred mostly within

pre-existing routes rather than through the opening of new ones.

The large decrease in travel time was accompanied by a substantial increase in

passenger transport. Reports from the Interstate Commerce Commission show that

aggregate passenger miles increased five-fold during the 1950s and 1960s, surpassing

those of all other modes of transportation combined (I.C.C. (1965), I.C.C. (1967)). At the

same time, a travel survey indicates that 60% of air passenger travel was for business,

with the average trip lasting 4.8 days (U.S. Department of Commerce (1958)). In

contrast, air transport played a minimal role in goods shipment during this period

(I.C.C. (1965)). Thus, the 11-hour reduction in coast-to-coast travel time primarily

facilitated face-to-face interactions for business travelers rather than improving goods

shipment.4

at Fairchild Semiconductor in Palo Alto, California, Texas Instruments in Dallas, Texas, and Bell Labs
in Murray Hill, New Jersey, would frequently meet in person to share advances. We expand on these
accounts in Section 2.

2The six domestic airlines in our data accounted for 75% of total air passenger transport.
3New York and Boston are about 300 km apart, while New York and San Francisco are located about

4,130 km apart. Between 1951 and 1966, we observe a 23% reduction (13 minutes) in travel time
between New York and Boston, and a 49% reduction (5 hours and 25 minutes) between New York
and San Francisco.

4Firm-employed inventors are likely to be highly sensitive to travel time (Perlow (1999)). For a review
of elasticities of business travel with respect to travel time, see Wardman (2012).

2



To study knowledge creation and diffusion we use patent data. We follow Jaffe et al.

(1993) and use patent citations as our observable measure of knowledge flow.5 We

assemble one dataset with all corporate patents granted by the United States Patent

and Trademark Office (USPTO) with filing year between 1949 and 1968, which includes

for each patent: filing year, technology classification, location (MSA) of the inventors

when they applied for the patent, owner of the patent and citations to other patents

which were granted by the USPTO.

We document three facts of patenting activity during our sample period. First, patent

growth was stronger in initially less innovative MSAs. Second, it was also stronger in

the South and the West of the US. Third, the mass of citations shifted towards longer

distances. Our results show that the decrease in travel time contributed to all three

facts.

We do our analysis in two steps. In the first step, we estimate a gravity equation

to obtain the elasticity of citations to travel time. We identify the elasticity exploiting

only within establishment-pair across-time variation in citations and travel time. The

estimated elasticity implies that citations increased on average 2.4% due to the decrease

in travel time between 1951 and 1966. We find that the absolute value of the elasticity is

increasing with the distance between the citing and cited establishments. At a distance

of more than 2,000km, the change in travel time implies an increase in citations of 6.8%,

contributing to the shift of citations towards longer distance.

In order to rule out the possibility that the opening of new routes or the timing of

adoption of jets at the route level was driven by variables that also affected knowledge

flows, we perform an instrumental variables estimation. We instrument the observed

travel time with a fictitious travel time computed by holding flight paths constant at

their initial configuration and assuming in each year all routes are operated with the

year’s average airplane. Hence, changes in instrumental travel time are only due to the

nationwide roll out of jets and is thus independent of decisions at the route level. The

5A vast literature uses patent citations as a proxy for knowledge diffusion. Recent examples include
Atkin et al. (2022), Cai et al. (2022), and Bahar et al. (2023). Inventor surveys indicate that citations are
a noisy but still informative signal for knowledge diffusion between inventors (Jaffe et al. (2000a),
Roach and Cohen (2013)).
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key source of variation in the instrument is the increase of in-flight speed relative to take-

off and landing time. As consequence, longer paths or paths with fewer stops –where

in-flight speed plays a larger role– experience greater reductions in the instrumental

travel time, consistent with patterns observed in the data. The instrumental variable

results confirm the baseline results, reflecting the reduced scope for endogeneity of

travel time. In addition, the results are robust to controlling for potential confounding

factors such as changes in highway travel time, telephone connectivity, flight ticket

prices and for a time-varying effect of distance. The results also remain after restricting

the sample to contain only establishments that existed in the initial time period and

when restricting the sample to MSA-pairs that always require at least one connecting

flight.

In the second step, using the estimated elasticity of diffusion of knowledge, we

compute a measure of knowledge access that is specific to each location-technology.

The measure captures changes in knowledge access that are only consequence of the

change in travel time. We use this measure to estimate the elasticity of new patents to

knowledge access. We identify the elasticity at the establishment level comparing only

across time variation in patents and knowledge access across establishments within

a location, conditional on aggregate technological trends. Thus, the identification is

independent of location specific changes in local population or R&D subsidies. We find

that the increase in access to knowledge led to a 3.5% yearly growth rate of new patents

filed.

Given the reduction in travel time was larger for longer distances, the increase in

knowledge access was stronger in locations geographically far from the initial inno-

vation centers located in the Midwest and the Northeast. Hence, by increasing access

to knowledge, the reduction in travel time contributed to the shift in the distribution

of innovative activity towards the South and the West of the US that we observe in

the data. The change in travel time predicts that the South and the West would have

an average yearly growth rate of patenting 0.75 percentage points higher than the

Northeast and the Midwest during our sample period.

We find that the value of the elasticity of patents to knowledge access is bigger in
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magnitude for establishments located in initially less innovative locations. Within each

technology class, we rank locations according to the amount of patents in the initial

time period and split them into four quartiles. We find that the increase in knowledge

access predicts a 4.5% yearly growth rate of patenting in locations in the lowest quartile

of initial innovativeness, while it predicts a 3.4% yearly growth rate in the highest

quartile. The difference in growth rates indicates that the increase in knowledge access

acted as a convergence force between locations, consistent with the data. Results go in

the same direction if we rank locations in terms of patents per capita.

We test whether improved face-to-face interactions led to an increase in patenting

through mechanisms other than knowledge spillovers. We find that neither changes

in market access nor financial access can explain the results. Two thirds of the effect

remain after controlling for changes in market access. Especially, the convergence effect

remains unchanged. Financial regulation restricted inter-state banking activity, limiting

the scope of increase financial access. We present suggestive evidence that the results

are not driven by a decrease in financial frictions.

Our results are robust to controlling for changes in market access by highway, time

changing telephone connectivity and to computing knowledge access using only knowl-

edge located at long distances.

We also estimate the elasticity by instrumental variables, constructing an instrumental

knowledge access with the instrumental travel time. Using the instrumental knowledge

access and a recentered version following Borusyak and Hull (2023), we obtain results

that go in the same direction as in the baseline analysis.

Literature. This paper contributes to multiple branches of literature. First, it con-

tributes to the literature on agglomeration and knowledge spillovers. Agglomeration

forces are usually understood as happening in a geographically localized manner

(Glaeser (2011), Arzaghi and Henderson (2008)). The literature on technology clusters

also documents this fact (Duranton et al. (2009), Kerr and Robert-Nicoud (2020), Moretti

(2021)). The seminal paper Jaffe et al. (1993) finds that patent citations decay rapidly

with distance. Our results show that jet airplanes allowed long distance knowledge

spillovers, facilitating the development of technology clusters in other regions.
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We contribute to the literature on transportation by constructing a novel data set

and studying a large change in transportation technology that isolates a shock to the

mobility of people. To the best of our knowledge, this is the first quantitative analysis of

the change in air travel time due to the roll out of jet airplanes in commercial aviation.

Other papers have studied the impact of transportation improvements on innovation.

Agrawal et al. (2017) study the impact on innovation of a region’s stock of highways,

while Perlman (2016) uses 19th century data on locations’ density of railroads. Berger

and Prawitz (2024) and Tsiachtsiras (2021) do so using the historical railroad expansion

in Sweden and France. Relative to them, we contribute by exploiting a quasi-natural

experiment that allows us to isolate a channel of face to face interactions, with little

scope for a trade channel.

In contemporaneous work Bai et al. (2023) study the impact of the opening of airline

routes on patent citations in a more recent set up. Bahar et al. (2023) shows non-stop

flights lead to more citations and collaborative patents in an international context. Both

papers represent supporting evidence that face to face interactions are relevant for

the diffusion of knowledge and hence it is a plausible and reasonable mechanism in

our context. We contribute to this literature by exploiting a large, nationwide shock

with limited risk of endogeneity. Importantly, we show that decreased travel time not

only leads to an increase in knowledge diffusion, but also convert such knowledge

diffusion into a measure of potential spillovers and show that it affects the creation

of new knowledge. Additionally, we highlight that knowledge spillovers shape the

geography of innovation and can act as a convergence force.

The impact of transportation improvements in economic outcomes has long been

a subject of study (Fogel (1963), Baum-Snow (2007), Michaels (2008), Donaldson and

Hornbeck (2016), Campante and Yanagizawa-Drott (2017), Jaworski and Kitchens

(2019) and Herzog (2021)). Our convergence result contrasts with previous studies on

improvements in other means of transport. Pascali (2017) finds that the introduction

of steam engine vessels in the second half of the 19th century led to an increase in

international trade which contributed to economic divergence between countries. Faber

(2014) finds that the expansion of the highway system in China led to a reduction of
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GDP growth of peripheral counties, with evidence suggesting a trade channel. While

both papers emphasize a trade channel, in our set up the trade channel would not be of

first order. Hence, we uncover a new effect of improved connectivity.

Feyrer (2019) studies the time-varying effect of air and sea distance on international

trade and economic growth, showing little to no effect of air distance for trade during

the 1950s and early 1960s. Additionally, our results are robust to controlling for a

time-varying effect of air distance, revealing that flight schedules contain relevant

information. Our paper is related to Campante and Yanagizawa-Drott (2017) who

study changes in international airplane connectivity, finding that it affects capital flows

and the spatial distribution of economic activity. Other literature has also found that

business travel affects innovation (Hovhannisyan and Keller (2015)), trade (Söderlund

(2023)) and industrial activity (Coscia et al. (2020)).

Finally, we contribute to the contemporaneous literature on innovation on the post

WW2 period. Gross and Sampat (2023) study the long-term effects of the public R&D

funding by the Office of Scientific Research and Development (OSRD) during WW2.

They find that this R&D shock enlarged pre-existing patenting gaps across locations.

Kantor and Whalley (2023) study the effects of NASA spending and the race to the

moon during the 1960s, finding stronger growth in county-industries that were more

space-relevant before the Space Race. We contribute to them by studying a shock that

is different in its nature: improved connectivity, rather than increased expenditure. We

provide evidence that this shock contributed to the post WW2 shift in innovative activity

towards the South and the West. Additionally, we show that improved connectivity

had a differential effect on innovation which contributed to closing the patenting gap

between locations. This is in line with the decline in innovation concentration during

our period of analysis documented in Andrews and Whalley (2021).

2 Historical context

This section describes elements of the historical context that are relevant for identifi-

cation and interpretation of the results. A more detailed description is presented in
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Appendix B.

Face to face interactions. Historical accounts from this time period refer to face

to face interactions as being an important driver to diffuse and access to knowledge.

For example, Bell Labs would organize in-person conferences to explain their new

technologies, including the conferral of considerable informal and tacit knowledge

(Nagler et al. (2022), Holbrook et al. (2000)). Gertner (2013) on pages 251 and 252,

quoting interviews with key inventors of the period, states that during this period,

”information was freely exchanged” and inventors of different firms would visit each

other in their respective laboratories. Ian Ross, president of Bell Labs during more

than 10 years, would state that in order to learn about semiconductor devices inventors

would travel to Bell Labs subsidiaries in Murray Hill, NJ, and in Building 2, NY, clearly

showing the relevance of being able to travel in person to the places in which innovation

takes place in order to learn.6

Large increase in air passenger travel and little air transport of goods. Figure 1 in

Appendix B extracted from a report of the Interstate Commerce Commission (I.C.C.

(1965) and I.C.C. (1967)) shows that air transport accounted for less than 0.1% of the

total ton-miles. On the other hand, Appendix Figure 2 shows that air passenger-miles

increased five-fold during our period of analysis, reaching a level equal to three times

the one of rail travel. Thus, improvements in air travel mainly affected the mobility of

people and not the shipment of goods.

Business travelers. The report of the first-ever nationwide survey of travelers (U.S.

Department of Commerce (1958)) shows two important pieces. First, presented tables

imply that more than 60% of air passenger travel was due to business travel. Second,

the average business trip took 4.8 days. Given this context, an 11-hour reduction in

travel time for a return coast-to-coast travel represents a substantial improvement for

business travelers. Hence, the observed increase in air passenger travel in Appendix
6”If you wanted to know about semiconductor devices, you went to Murray Hill [New Jersey] and

Building 2 [Manhattan, NY]”. Quotes are from Gertner (2013) pages 251 and 252, referring to an
interview with Ian Ross president of Bell Labs in 1979-1991. Inventors who would visit each other
include Morrey Tanenbaum, inventor of the silicon transistor who was based at Bell Labs in Murray
Hill, New Jersey; Jack Kilby, Nobel laureate in Physics inventor of the hybrid integrated circuit at
Texas Instruments in Dallas, Texas and; Robert Noyce co-founder of Fairchild Semiconductor and
later on Intel Corporation, inventor of the monolithic integrated circuit.
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Figure 2 likely reflects a considerable increase in business travel.

Regulation. As explained in Borenstein and Rose (2014), the Civil Aeronautics Board

(CAB) regulated the market by deciding which airlines could fly, in which routes they

could operate, the price that they charged in each route, the structure of subsidies and

merger decisions. When the CAB was created in 1938, it conceived special rights to the

existing airlines over the connections they were operating. The CAB did not permit

entry of new airlines on interstate routes and gradually allowed current airlines to

expand their routes. Importantly, Borenstein and Rose (2014) in pages 68-69 explain that

”the regulatory route award process largely prevented airlines from reoptimizing their networks

to reduce operation costs or improve service as technology and travel patterns changed.” As

a consequence, any technological improvement such as increases in aircraft speed,

capacity or range would not affect each airline’s flight network in the short term.

3 Air travel data

We construct a new data set of the flight network in the United States during the 1950s

and 1960s. We collected and digitized information of all the flights operated by the

main airlines and obtained the fastest route and travel time between every two airports

in the network. Additionally, we constructed an instrumental travel time that is not

affected by the opening of new routes neither the allocation of jets across routes. Details

are provided in Appendix C.

To construct the flight network we digitize historical flight schedules for the years

1951, 1956, 1961 and 1966 of six domestic airlines: American Airlines (AA), Eastern

Airlines (EA), United Airlines (UA), Trans World Airlines (TWA), Braniff International

Airways (BN), Northwest Airlines (NW).7 The six domestic airlines together accounted

for between 77% and 81% of interstate air revenue passenger miles C.A.B. (1966).8

Appendix Figures 5 and 6 display the flight network in continental United States.

7Appendix Figure 3 is a fragment from a page of the 1961 flight schedule of American Airlines. The
selection of years was done based on data availability and with a criteria to be equally spaced.

8AA, EA, UA and TWA were referred as the Big 4 which accounted for between 69% and 74% of
interstate air revenue passenger miles in the US in the years collected. BN and NW were digitized in
order to increase the geographical coverage.
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In total we have digitized 5,910 flights (unique combinations of flight number-year).

However, flights often have multiple stops. If we count each non-stop part (leg) of these

flights separately, our sample contains 17,469 legs. Our data connects 275 US airports

creating 2,541 unique origin-destination (directional) airport links.

Using departure and arrival time of each flight at each airport, we obtain the fastest

route and corresponding travel time between every two airports in our data. We modify

the Dijkstra algorithm to account for layover time in case the fastest route includes

connecting flights. We then match every airport to 1950 Metropolitan Statistical Areas

(MSA) in contiguous United States using the shape file from Manson et al. (2020). We

match each airport to all MSAs for which it lies inside the MSA or is at most 15km away

from its boundary.9 We use the sample of 108 MSAs that are matched to at least one

airport in the four years as our baseline travel time data.10

3.1 Descriptive statistics: Air travel

Appendix Figure 8 shows that from 1951 to 1966, the adoption of jets was stronger

for longer routes. In 1961, all MSA-pairs more than 3,000km apart connected with a

non-stop flight operated at least one jet flight, and this expanded to all those more than

2,000km apart in 1966. Additionally, conditional on flying non-stop and having a jet,

longer routes got a larger reduction in travel time.11 Appendix Figure 10 shows the

large decrease in travel time for MSAs connected with a non-stop flight. The figure

also exposes the emergence of +8 hours flights in 1956 due to a change in regulation.12

Given the concern that such change in regulation may be endogenous and that it affects

long distance routes, in the construction of our instrument we keep only non-stop

routes existing in 1951.

9The 15km distance was chosen after inspecting airports outside MSAs that are near the border and
should arguably be matched, as for example, Atlanta ATL airport.

10In Appendix C we include a table with the 168 MSAs, those connected at least once and those connected
in the four years.

11For example, two routes always connected non-stop as Chicago to Los Angeles (2,800 km apart) and
New York to Boston (300 km apart) got respectively 47% and 23% reduction in travel time.

12In 1951 the regulation set a 8-hour maximum flight time allowed for a crew in a 24-hour period. In
1956, the new regulation up to 10 hour flights for transcontinental flights which made it possible to
connect New York City and Los Angeles with a non stop flight in 8 hours 30 minutes.
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The change in travel time in non-stop flights is also reflected in the travel time for

connecting flights. Figure 1 shows, relative to 1951, the average change in travel time for

all MSA-pairs, including non-stop and connecting flights. The continuous line shows

the observed change and the dashed line shows the change in the instrumental travel

time explained below. Between 1951 and 1956, there is an average reduction in observed

travel time of 9.2% which is roughly constant for all distances over 500km. Between

1951 and 1961, there is a reduction in travel time that is increasing with distance. The

average decrease in travel time is of 16.8%, while the reduction is of 29.4% for a distance

of more than 2,000km and 39.2% for a distance of 4,250-4,500km. Between 1951 and

1966, there is an even stronger decrease in travel time at all distances. The average

reduction in travel time is 28.7% across all distances, 40.8% for a distance of more

than 2,000km and 48.4% for a distance of 4,250-4,500km. The increased adoption of

jets for short distance flights implied that both non-stop flights at short distance and

connecting flights at farther distance had a decrease in travel time.

Figure 12 in Appendix C shows that the change in travel time is accompanied by

a reduction of the amount of legs needed to connect two MSAs at every distance.

However, between 1956 and 1961 we do not observe a big reduction in the amount of

legs, implying that the decrease in travel time observed in Figure 1 between 1956 and

1961 comes from a source other than the amount of legs. In Appendix Figure 13 we

open up the change in travel time by the way an MSA pair was connected in 1951 and

1966: either directly (non-stop flight) or indirectly (connecting flight).13 Importantly,

MSA-pairs more than 2,000km apart that were connected indirectly in both periods

got an average reduction in travel time of 42%. This fact shows that in case we are

concerned about endogeneity of jet adoption in non-stop flights, there would still be a

large decrease in travel time when focusing on routes that require connecting flights.

It could be the case that a reduction in the amount of legs or an increase in frequency
13Much of the increase in travel time for MSA pairs less than 250km apart comes from routes that in 1951

were operated non-stop while in 1966 were operated with connecting flights. Appendix Figure 14
repeats the exercise discarding layover time in all time periods. By comparing Figure 13 and Figure
14 we can disentangle the effect of layover time and the change in in-flight time. For MSA pairs less
than 250km that changed from direct to indirect connection, 80% of the increase in travel time is due
to the increase in layover time (which was previously zero as it was a non-stop flight), and 20% is
due to the increase of in-flight time.
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Figure 1: Observed and Instrumental Travel Time between US MSAs.
Change in travel time within MSA-pairs relative to 1951, including non-stop and indirectly connected
MSA-pairs. Each dot represents the average change for MSA-pairs within a 250km bin (e.g. 2,000km -

2,250km). The solid line shows the observed change in travel time. The dashed line shows the change in
the counterfactual travel time used as an instrument. Counterfactual travel time is calculated by fixing
the MSA-pair flight path to the 1951 path and applying the average speed and takeoff/landing time of

each year (see Section 3.2 for details).

of flights reduces layover time, which then translates into a reduction of travel time.

In Appendix Figure 15 we compare the change in travel time from 1951 to 1966 with a

counterfactual change in travel time in which we eliminate layover time in both time

periods. We observe that the average change in travel time is stronger at every distance

in the counterfactual scenario without layover time. This implies that, if any, layover

time attenuated the reduction in travel time.

3.2 Constructing an instrument

One endogeneity concern in the estimation stage would be that the change in travel time

is not as good as random (i.e. driven by a technological difference between propeller

and and jet airplanes) but rather by endogenous decisions of agents (e.g. airlines or the

regulator) that may be correlated with our outcomes of interest (i.e. knowledge flows

and creation of new knowledge).
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In this section we construct an instrumental travel time that is based on the pre-

existing flight routes and the time-varying nationwide roll out of jets. In the instrumen-

tal travel time we fix the flight path to 1951 and for each year we simulate the travel

time that would have happened if all routes were operated with the average airplane of

that year, dropping layover travel time.14 In this way, the instrument abstracts from the

endogenous decisions of two agents: First, regulator’s decision on the opening/closure

of routes. Second, airlines’ decision about to which routes allocate jet vs propeller

airplanes and scheduling (frequency of flights and layover time). The key source of

variation in the instrument is that as the speed of airplanes increases, the importance of

the number of stops relative to the distance flown changes, and this provides a decrease

in travel time that is larger for MSA-pairs located farther apart and/or with fewer stops.

The two identifying assumptions for the instrument to be valid are that 1951 routes do

not yet incorporate changes in expectation of the arrival of jets, and that the nationwide

roll out of jets is not driven by any single route.

In Borenstein and Rose (2014) it is argued that, due to strict regulation, it was difficult

for airlines to adapt their flight network when technology to fly changed. However,

we may be concerned that the decision of the regulator to grant new routes could be

targeted to specific pairs or correlated with unobservable variables that also affect the

creation and diffusion of knowledge.15 Hence, as the first step in the construction of

our instrument, we fix paths to the fastest path in 1951.16,17

Airlines could decide on two factors that affect travel time: the type of airplane (jet

vs. propeller) operated in each route and scheduling, which consists on the frequency

14Fixing the flight path between two (indirectly connected) airports to the fastest path in 1951 means
that if in 1951 to go from New York City to San Francisco the fastest path included a stop in Chicago,
then the instrumental travel time follows the same path New York-Chicago-San Francisco in all years.

15For example, the regulator could have targeted the opening of new routes between places in order to
boost their economic activity.

16By fixing the path we are also not allowing for the opening/closure of new routes. For example, in the
instrument there are no non-stop transcontinental routes.

17In our estimations we exploit time variation for identification. Hence, if pre-existing routes affect the
levels at the origin-destination level, this does not drive our identification. However, we may be
concerned that pre-existing routes could affect future growth and not only levels. To address this
concern, in robustness analysis Appendix Table 17 we estimate the elasticity of citations to travel
time using only MSA-pairs that are always indirectly connected. Results are consistent with baseline
estimation.
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of flights and layover time in case of connecting flights.18 We may be concerned that, as

with the regulator, airlines’ decisions could be correlated with unobservables that also

affect the creation and diffusion of knowledge.19 The second step in the construction of

our instrument is to discard layover time (hence discarding all scheduling decisions) in

all time periods, and assume that in each year all routes are operated with a fictitious

average airplane of the year. Hence, the change in instrumental travel time in a route

is independent of the type of airplane used in the route and it only depends on the

nationwide roll out of jets.

To construct the instrumental travel time, we first estimate a linear regression of

travel time on flight distance separately for each year, using only the fastest non-stop

flights for each origin-destination airport pair.20 These yearly regressions provide the

parameters for the fictitious average airplane of each year: the intercept represents

the takeoff and landing time, while the slope indicates the (inverse) cruising speed.

Second, we use these regressions to predict travel times for all non-stop flights in each

year. Third, we then compute the fastest paths for all airport pairs in 1951 (including

indirect connections) using the Dijkstra algorithm based on the 1951-predicted travel

times. Fourth, for each year, we calculate the predicted travel time along the fastest 1951

path for all airport pairs.21 Therefore, the instrumental travel time reflects across-time

variation within the fixed 1951 path. For instance, if the Dijkstra algorithm in 1951

determined that the optimal path from A to B was via C, the instrumental travel time

for A-B in subsequent years is calculated as the sum of the fictitious travel times for

A-C and C-B obtained in the second step. Layover time is set to zero for all years.

The across-time source of variation in the instrument is the time varying importance

18In 1961, all non-stop flights of more than 3,000km had at least one jet operating within them, while in
1966 it was the case in all non-stop flights of more than 2,000km. Therefore the endogeneity of jet
adoption is a smaller concern for long distance flights.

19For example, airlines may have decided to prioritize the allocation of jets to routes which had a higher
share of business travel, which may be correlated with the diffusion of knowledge.

20These regressions use all routes available in each year. Results, presented in Appendix Table 7, show
that the implied average flight speed increased from 412 km/h in 1951 to 453 km/h in 1956, 758
km/h in 1961, and 876 km/h in 1966. Meanwhile, the intercept fluctuates from 25.3 minutes in 1951
to 29.9 minutes in 1966.

21Some MSAs have multiple airports. Within each MSA-pair, we use the fastest airport-pair path. The
instrumental travel time holds the 1951 airport-pair fixed for each MSA-pair.
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of in-flight travel time relative to the number of stops required to go from one MSA to

another. In shorter flights, the amount of stops (intercept) have a larger share of the total

instrumental travel time and changes in flight speed (slope) have less of an influence.

In long distance flights the flight speed becomes more relevant. As estimated flight

speed more than doubles over the time period, longer flights have a larger reduction in

travel time in the instrument. However, differences in the amount of stops required

also leads to variation in changes of travel time conditional on the route distance. Long

distance routes and routes with less amount of stops have a larger reduction of travel

time in the instrument.22 Appendix Figure 13 shows that this is also a pattern observed

in the data.

Figure 1 shows that the instrumental travel time follows pretty closely the observed

change in travel time in each year. Especially, it replicates the pattern of a stronger

decrease in travel time for MSAs located farther apart. This finding shows that most of

the change in travel time that we observe is due to the change in speed of airplanes,

and that the endogeneity concern is limited for MSAs located far away from each other.

In Appendix C we present other two counterfactual travel times: one in which we fix

airplanes to be the average airplane of 1951 and allow routes to evolve, and another

in which both the average airplane and routes are varying. These two counterfactuals

together with the one presented in this section allow us to decompose the change in

travel time by the change in routes and the change in speed of airplanes. We obtain that

around 90% of the change in travel time is due to the change in speed of airplanes, while

around 10% of the change is due to the change in the flight routes. Appendix Figure

17 shows that the share is roughly constant for all distances. This finding confirms

that most of the observed changes in travel time are due to improvements in flight

technology.

22For example, using the coefficients in Appendix Table 7, the instrumental travel time for a pair of
airports located 300 km apart connected non-stop in 1951 and 1966 would be 69.1 minutes and
50.3 minutes respectively, indicating a 27.2% reduction in travel time. For a pair of airports located
2,000 km apart connected non-stop, the instrumental travel time would be 317.3 minutes and 165.9
minutes, indicating a 47.7% reduction in travel time. Assuming both pairs of airports had two
intermediary stops in a straight line between the origin and destination in both years (such that the
origin-destination distance and travel distance are the same), the reduction in travel time would be
8% for the 300 km apart airports and 38.6% for the 2,000 km apart airports.
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4 Patent data

We use patent data as our source of innovation information.23 We construct a dataset of

all corporate patents granted by the United States Patent and Trademark Office (USPTO)

with filing year between 1949 and 1968, which includes for each patent: filing year,

technology classification, location of the inventors when they applied for the patent,

owner of the patent and citations to other patents also granted in the United States.24

This dataset provides the distribution of patents and citations over the geographic

space. Details on the construction of the data are provided in Appendix D.

We select and aggregate our patent data sample as follows. We drop patents that

are owned by universities or government organizations. To count patents that are

classified into multiple technology categories, we do a fractional count by assigning

proportionally a part of the patent to each category. Citations are counted as the

multiplication of the technology weight of the citing and cited patents. We drop patents

(and their citations) that have inventors in multiple MSAs and citations in which the

citing owner is the same as the cited owner.25

We aggregate the patent data to 4 time periods of 5 years each, with the center of

each period being the year of travel time data collected. The periods are: 1951 (which

contains the years 1949-1953), 1956 (1954-1958), 1961 (1959-1963) and 1966 (1964-1968).

We consider only patents in MSAs that are matched to an airport in the four periods.

The final dataset contains 108 MSAs with patents and travel time.26

23For a discussion on using patents as a measure of innovation see Fagerberg et al. (2005) Chapter 6 and
Carlino and Kerr (2015) Chapter 6.2.3. Feldman (1994) finds that the correlation between the location
where new products are introduced to the market and patents is 0.8.

24Filing year, also called application year, is the closest date to the date of invention that is present in the
data and it represents the date of the first administrative event in order to obtain a patent. Front page
patent citations were made compulsory in 1947 Gross (2019) and there were very few citations prior
to that date, limiting the analysis going backwards. At the same time, Appendix Figure 19 shows that
the location non-matching rate of patents (likely due to registration changes in the USPTO) increases
up to 20% at the beginning of 1970s limiting the analysis going forward.

253% of patents have inventors in more than one MSA. Working with multi-MSA patents requires an
assumption on how to compute distance and travel time between the citing and cited patents, as they
do not have a single origin-destination location pair. We hence prefer to abstract from multi-MSA
patents.

26Appendix Table 8 shows amount of patents, citations and quartiles of citation distance in each of the
steps of the sample selection.
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4.1 Descriptive statistics: Patents

This section presents three facts about US patents over our sample period: First, initially

less innovative locations had a higher patenting growth rate implying a convergence

rate between MSAs in the lowest and highest quartiles of 5.3% per year. Second, the

South and the West had a yearly growth rate around 2 percentage points higher than

the Northeast and the Midwest, leading to a geographic shift of innovation. Third, the

mass of citations shifted towards longer distances, with the third quartile of citation

distance increasing by 39%.

We compute descriptive statistics by technology category. In here we present averages

across technologies. More information on the presented descriptive statistics and a

disaggregation by technology are included in Appendix D.

Fact 1: Initially less innovative locations had a higher patenting growth rate.

Figure 2 shows the geographic distribution of patenting in 1951. Darker colors refer to

a higher level of initial innovativeness, which is defined as the amount of patents filed by

inventors in the MSA in 1951.27 We observe that MSAs in the top quartile of patenting

are concentrated in the Northeast (which includes New York) and the Midwest (which

includes Chicago), with few additional MSAs in the West.28

Figure 3 shows the geographic distribution of patenting growth in 1951-1966.29 We

observe a striking pattern relative to Figure 2: high growth MSAs were those that were

initially less innovative. High growth happens in initially less innovative locations in

the South and the West but also in the Northeast. The average yearly growth rate of

MSA-technologies in the lowest quartile of initial innovativeness is 7.2% while it is 1.9%

27To compute the level of initial innovativeness we only use patents filed in 1951 (years 1949-1953).
We aggregate patents to the MSA-technology level and then compute the quantile-position of each
MSA in the technology. Lower values of quantile-position refers to lower amount of patents in the
technology (relative to other MSAs). Each MSA has a different value of quantile-position in each of
the 6 technology categories. To obtain the MSA level quantile we take the average quantile across
technologies within the MSA. Finally we classify MSAs into quartiles depending on whether the
average quantile is higher or lower than the thresholds 0.25, 0.50, 0.75.

28The top 5 patenting MSAs in 1951 were: New York City (25% of all patents), Chicago (11%), Los
Angeles (8%), Philadelphia (6%) and Boston (4%).

29We compute the growth rate of patenting in each technology within a MSA and then take the average
across technologies within the MSA.
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in the highest quartile.30 The percentage point difference between the two growth rates

implies that locations in the lowest quartile converged towards locations in the highest

quartile at a speed of 5.3% per year.31 The convergence in patenting across MSAs is

consistent with The Postwar Decline in Concentration, 1945-1990 described in Andrews

and Whalley (2021).

Appendix Figure 24 confirms this pattern presenting the MSA’s ranking of innova-

tiveness in 1951 and its subsequent patenting growth rate in 1951-1966. MSAs that

were initially more innovative are those that saw lower values of subsequent patenting

growth. At the mean, lowering initial innovativeness by 10 positions in the ranking

was associated with a subsequent 0.42 percentage points higher yearly growth rate of

patenting.

Figure 2: Geography of Patenting 1951 Figure 3: Patent growth 1951-1966
In Figure 2 each MSA is colored according to the amount of patents applied by inventors residing in that

MSA in the period 1949-1953, while in Figure 3 according to the growth rate in patents applied
1949-1953 to 1964-1968. 4th Quartile is respectively the MSAs with the largest amount of patents and

MSAs with the highest growth rate. Patenting and quartiles are computed only for MSAs that are used
in the regression analysis. MSAs for which we do not observe an airline operating in all time periods are

marked as Missing.

Fact 2: The South and the West of the US had a higher patenting growth rate.

Figure 3 shows that MSAs located in the South and the West of the US had a higher
30We first compute the 1951-1966 growth rate (19-year growth rate) for each MSA-technology. We then

take averages across MSAs within a quartile-technology, and after take averages across technologies
within a quartile. Finally, we convert the 19-year growth rate into an average yearly growth rate.

31We note that the aggregate growth of patents is much smaller than the across MSAs unweighted
average, and this is exactly because initially less innovative MSAs grew faster. If we compute the
growth rate in nationwide amount of patents in each of the technologies and then average across
technologies we obtain a yearly growth rate of 1.5%.
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patenting growth rate in 1951-1966. We classify MSAs using Census Regions of the

US (Midwest, Northeast, South and West) and aggregate patents within each region-

technology-year.32 The share of patents filed by inventors located in the Midwest and

the Northeast decreased from 75% in 1951 to 68% in 1966. In the period 1951-1966 the

South and the West increased their amount of patenting by 80%, while the Midwest and

the Northeast had a 22% growth.33 Translated into yearly growth rates, the South and

the West grew three times as fast as the Midwest and the Northeast (3.13% vs. 1.08%

per year).34

Fact 3: Distance of citations increased. In our analysis we use citations as a proxy for

knowledge diffusion. According to Jaffe et al. (1993) ”a citation of Patent X by Patent Y

means that X represents a piece of previously existing knowledge upon which Y builds.” (page

580).35 We compute the distance between the citing inventor and the cited inventor.

Figure 4 shows the evolution over time of the first, second and third quartile of citation

distance.36 We observe that 25% of citations happened between inventors located less

than 300km apart throughout our sample period. For the middle 50% of citations we

observe that over time inventors cited other inventors located farther away. The third

quartile of citation distance increased from 1,590km in 1951 to 2,212km in 1961, a 39%

increase in the distance.37 In other words, the mass of citations shifted towards longer

distances.

In Figure 5 we present the share of citations by distance range between the citing

and cited inventors.38 The distance cutoffs where chosen in order to have a balanced

32In Appendix E we present a map with the four Census Regions. Some MSAs belong to multiple
Census Regions. In here we present descriptive statistics duplicating such MSAs (assigning the MSA
to both Census Regions). Statistics dropping such MSAs are quantitatively similar.

33Growth rates are computed by region-technology and then averaged across technologies within region.
343.13% ≈ 1.80(1/19) × 100, 1.08% ≈ 1.22(1/19) × 100
35Jaffe et al. (1993) discusses the reasons why to cite and why not to cite. Using a survey of inventors,

Jaffe et al. (2000b) find that there is communication among inventors and citations are a ”noisy signal
of the presence of spillovers.”

36We compute distance between MSA centroids.
37As a reference, the distance from New York City NY to other places is: Boston MA 300km, Chicago IL

1,140km, Dallas TX 2,200km, San Francisco CA 4,130km. The quantile 0.10 of was at 0km in every
period, implying that 10% of citations took place within MSA. The quantile 0.90 was between 3,538km
and 3,716km over the sample period.

38While Figure 4 shows how the distance of each quantile changes over time, Figure 5 shows the mass of
citations (and hence the quantile to which belongs) in a certain distance cutoff. For example, in 1951
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share of citations in the initial time period, and considering the changes in travel time

presented in Section 3.1. The share of citations that happen between inventors located

more than 2,000km apart grew from 20.9% in 1951 to 27.1% in 1966. The 6.2 percentage

points increase represents an increase of 30% of the share of citations at more than

2,000km.

Figure 4: Quantiles of citation distance Figure 5: Share of citations by distance

5 Diffusion of knowledge

In this section we show that the reduction in travel time led to an increase in knowledge

diffusion, especially over long distances. In doing so we estimate the parameter β

highlighted in equation (2): the elasticity of knowledge diffusion to travel time.

To perform the analysis we merge the Air Travel and Patent datasets to obtain a final

dataset that contains for each patent owner-location, the amount of patents filed in a

certain 5-year period and technology class, the amount of citations to other patents

with their respective owner identifier, location and technology class, and the travel

time to every location. We label a patent owner a firm and call research establishment a

firm-MSA pair for MSAs in which it has inventors applying for patents. We aggregate

the share of citations in the 0-300km range was 31.6%, which is equal to saying that the quantile 0.316
in 1951 was 300km.
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citations to the citing-cited establishment-technology within each period. We assume

that passengers take a return flight, hence we make travel times symmetric.39

5.1 Diffusion of knowledge: Baseline estimation

We estimate a gravity equation which relates citations between two establishments-

technologies with their pairwise travel time.40 We estimate the following regression:

citationsFiGjhkt = exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt (1)

where citationsFiGjhkt is the amount of citations from patents filed by the establishment

of firm F in location i, technology h and time period t, to patents filed by establishment

of firm G in location j and technology k. We call Fi the research establishment of firm F

in location i. travel timeijt is the air travel time (in minutes) between location i and j

at time period t. The parameter of interest in the regression is β, which represents the

elasticity of citations to travel time.41 If citations are affected negatively by travel time

we would expect a negative value of β.

Given the panel structure of our data, we can include the fixed effect FEFiGjhk that

absorbs any time invariant citation behavior within the citing establishment-technology

and cited establishment-technology. This fixed effect flexibly controls for persistent re-

lationships within an establishment pair that would lead to relatively more (or less)

citations. That includes characteristics like physical distance, but also pre-existing

commercial relationships between establishments. The fixed effects FEFiht and FEGjkt

control for the time changing general level of citations specific to each establishment

and technology. For example FEFiht controls for the fact that if Fih files more patents

39travel timeijt =
travel timeoriginal

ijt +travel timeoriginal
jit

2 where travel timeoriginal
ijt stands for the travel time between

MSA i and j at time period t.
40For explanation and micro foundations of the gravity equation see Head and Mayer (2014) and

references thereof. While variation in travel time is at the MSA-pair level, we estimate the regression
at the more granular level of the establishment-pair as this allows to control for establishment-level
shocks.

41A 1 percent increase in travel time has an effect of β percent increase (or decrease in the case of a
negative β) in citations.
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in a given period, it would mechanically make more citations to every establishment.

On the other hand, FEGjkt controls for Gjk filing more patents or higher quality patents

that would receive more citations from every establishment.42

The inclusion of FEFiGjhk implies that only variation across time within an establishment-

pair is used for identification. By additionally including the fixed effect FEFiht, the

across-time variation is compared only between citing-cited establishment-technology

pairs FiGjhk within a citing establishment-technology Fih in period t. As we also

include FEGjkt, the comparison is done while controlling for the size of the cited

establishment-technology Gjk in period t. Put differently and simplifying slightly, the

identification of β relies on changes in citations and travel time within an establishment-

pair, relative to another establishment-pair with the same citing establishment, condi-

tional on the two cited establishments’ sizes.

Following Silva and Tenreyro (2006), we estimate the gravity equation by Poisson

Pseudo Maximum Likelihood (PPML).43 This estimation methodology has two ad-

vantages over a multiplicative model that is then log-linearized to obtain a log-log

specification. First, it only requires the conditional mean of the dependent variable to be

correctly specified, while the OLS estimation of the log-linearized model would lead to

biased estimates in the presence of heteroskedasticity. Second, it allows to include zeros

in the dependent variable, which is especially relevant when using disaggregated data.

One downside of estimating PPML with the fixed effects that we include is that both

coefficients and standard errors have to be corrected due to the incidental parameter

problem (Weidner and Zylkin (2021)). We follow Weidner and Zylkin (2021) to use

split-panel jackknife bias-correction on the coefficients and Dhaene and Jochmans (2015)

to bootstrap standard errors which we also bias-correct with split-panel jackknife.44

Whenever FiGjhk has positive citations in at least one period and missing value in

another, we impute zero citations in the missing period.45 Travel time is set to one

42In the International Trade literature, the parallel of the fixed effects (simplified for exposition) would
be: FEij country-pair fixed effect, FEjt origin-time fixed effect and FEit destination-time fixed effect.

43We use the package fixest (Bergé (2018)) in R to estimate high dimensional fixed effects generalized
linear models feglm with Poisson link function.

44Details on the bias correction and bootstrap procedures are provided in Appendix F.
45We do not impute zeros in FiGjhk that are always zero, as those observations would be dropped due
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PPML IV PPML

Dep. variable: citations
(1) (2) (3) (4)

log(travel time) −0.084∗∗∗ −0.161∗∗∗
(0.017) (0.031)

log(travel time) × 0-300km −0.015 −0.185
(0.029) (0.153)

log(travel time) × 300-1,000km −0.085∗∗∗ −0.155∗∗∗
(0.024) (0.044)

log(travel time) × 1,000-2,000km −0.096∗∗∗ −0.132∗∗
(0.032) (0.044)

log(travel time) × +2,000km −0.166∗∗∗ −0.206∗∗∗
(0.035) (0.042)

Control residuals 1st stage - - Yes Yes

N obs. effective 5, 147, 161 5, 147, 161 5, 147, 161 5, 147, 161
R2 0.88 0.88 0.88 0.88
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 1: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt =

exp [β log(travel timeijt) + FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of
firm F in location i, technology h and time period t, to patents filed by establishment of firm G in location j and
technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1
when i = j. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero
citations in the missing period. Column (2) includes the interaction of travel timeijt with a dummy for distance bin
between the citing establishment Fi and the cited establishment Gj. Column (3) and (4) show the result of two step
instrumental variables estimation, where log(travel timeijt) is instrumented with log(travel timefix path

ijt ), the fictitious
travel time that would have taken place fixing the flight path of 1951 and operating in each year with the average
airplane of the year. Columns (3) and (4) include as controls residuals of first stage. Bootstrap standard errors are
presented in parentheses. The coefficients and standard errors in columns (1) and (2) are jackknife bias-corrected. R2
is computed as the squared correlation between observed and fitted values.
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minute whenever i = j.46

Column (1) in Table 1 presents the results of estimating equation (1). The value of the

elasticity of citations to travel time is estimated to be −0.084, statistically significant at

the 1% level. Given the average reduction in travel time of 31.4% in the full estimating

sample, the elasticity implies that citations increased on average 2.6% as consequence

of the reduction in travel time. If we consider the average decrease in travel time across

all MSAs in the baseline travel time data, the implied increase is 2.4%.47

The importance of air transport relative to other means of transport potentially de-

pends on the distance to travel. Also, we observed in Section 3.1 that the improvements

in air travel time depended on the distance to travel, with a difference in jet adoption

for travel distances under and over 2,000km. Taking these two characteristics into

account, we estimate a variation of equation (1) in which we allow the elasticity of

citations to travel time to vary by distance interval between the locations of citing and

cited establishments.48 Column (2) in Table 1 shows the result of this estimation.49 The

estimated value of the elasticity in absolute terms increases with distance, reaching

−0.166 for distances of more than 2,000km. Between 1951 and 1966 the average change

in travel time in the full estimating sample is 47.8% for a distance of more than 2,000km.

The estimated elasticity implies that citations between establishments at more than

2,000km apart increased by 7.9% due to the decrease in travel time. In total citations

at more than 2,000km increased by 22.9%, implying that the change in travel time can

account for 34.6% of the observed increase. If instead we consider the 40.8% average

to not being able to identify FEFiGjhk.
46We measure air travel time in minutes. In our sample 14.9% of citations happen within the same MSA.

The inclusion of those citations in the estimation increases the amount of observations available to
identify of FEFiht and FEGjkt, and hence keeping them increases the amount of FiGjhkt that remain in
the effective sample to identify β. In order to include them we then need to impute a within-location
travel time. We assume that within-location (air) travel time is not changing across time periods.
Nonetheless, the identification of β is not affected by the value chosen for the within-location (time
invariant) travel time, as β is identified by across time variation. In the appendix we show results
using other values of (time invariant) within MSA travel time and the coefficients remain equal.

47These values come from the multiplication of the elasticity of citations to travel time −0.084 and the
average change in travel time between 1951 and 1966: -31.4% in the full estimating sample and -28.7%
in the raw data of travel time across MSAs.

48We compute distance between the geographical center of each MSA.
49The share of observations (citations) in each distance interval in the effective sample is: 0-300km 25.4%

(27.5%), 300-1,000km 32.5% (30.1%), 1,000-2,000km 19.0% (19.1%), +2,000km 23.1% (23.4%).
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reduction in travel time across MSAs in the baseline data, the elasticity implies an

increase in citations of 6.8%, accounting for 29.7% of the total citation increase.

In Appendix D we investigate different heterogeneous effects. We estimate an

heterogeneous elasticity depending on the level of spatial concentration of the citing

technology and the cited technology, we do not find a statistical difference. We also look

at whether it is older patents or younger patents that get diffused, finding some slight

evidence that it is technologies that take longer time to diffuse that increase more their

diffusion with the reduction in travel time. We study citations to and from government

patents, and self citations, on the whole we do not find a different pattern from the

baseline. We also do not find a particular pattern of the elasticity depending on the

citing firm’s size as measured by the amount of patents filed in 1949-1953. Finally, we

estimate the elasticity by citing and cited technology and most of the effect seems to

come when the citing and cited technologies are the same.

There are two types of threats to identification in estimating equation (1): (i) the

potentially targeted changes in travel time, which could be due to the opening of

new routes, the allocation of jets across routes, or changes in scheduling, and (ii) time

changes in other variables at the MSA-pair level which also drive the diffusion of

knowledge and are correlated with the changes in travel time. In the next sub-section

we address the first type of threat by estimating the model by instrumental variables.

In the following subsection we address the second type of threat by adding multiple

controls. In both cases we show that results do not qualitatively change.

5.2 Diffusion of knowledge: Instrumental variables estimation

As mentioned in Section 3.2, we may be concerned that the timing and allocation of

jets to routes and that the opening/closure of routes were not random. In case there is

an omitted variable that drives both the change in travel time at the MSA-pair level

and the change in citations across establishments within the same MSA-pair, we would

estimate biased coefficients. In order to tackle the endogeneity concern due to omitted

variable we do an instrumental variables estimation using the instrument proposed in
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Section 3.2. To implement the instrumental variables estimation we follow a control

function approach described in Wooldridge (2014). We proceed in two steps estimating

the following two equations:

log(travel time)FiGjhkt = λ2 log(instrumental travel timeFiGjhkt)

+ FEFiGjhk + FEFiht + FEGjkt + uFiGjhkt

(2)

citationsFiGjhkt = exp [β log(travel timeijt) + λ ûFiGjhkt

+ FEFiGjhk + FEFiht + FEGjkt] × vFiGjhkt

(3)

In a first step we estimate equation (2) and obtain estimated residuals ûFiGjhkt. In a

second step we use the estimated residuals as a regressor in equation (3) which controls

for the endogenous component of travel time. To perform inference we bootstrap

standard errors.50

Columns (3) and (4) of Table 1 show the results of the instrumental variables esti-

mation. If airlines were allocating jet airplanes to routes that would have witnessed a

higher degree of exchange of knowledge even in the absence of jets, then we would

expect the instrumental variables estimate to be smaller in absolute terms relative to

the baseline coefficient. On the other hand, if the regulator targeted the opening of new

routes between places that were in a lower trend of exchange of knowledge, we would

expect the instrumented coefficient to be larger in absolute terms. Column (3) estimates

the elasticity to be -0.161, bigger in absolute value compared to the non-instrumented

estimate. The instrumental variables corrects for a downward bias in absolute terms,

which represents evidence in favor of the regulator targeting the opening of new routes

between places that had a lower degree of exchange of knowledge.51,52

50Appendix F includes details on the bootstrap procedure.
51The incidental parameter problem is potentially present also in the instrumental variables estimation

(IV PPML). However, we are not aware of any bias-correction procedure for IV-PPML. Hence, columns
(3) and (4) in Table 1 are not bias-corrected. In column (2) of Table 2 we present the PPML estimation
not bias-corrected.

52The literature on weak instruments for non-linear instrumental variables is scarce. The rule of thumb
of Staiger and Stock (1997) based on the F statistic is constructed using the bias that a weak instrument
generates in a linear second stage (see Staiger and Stock (1997), Stock and Yogo (2005) and Sanderson
and Windmeijer (2016) for testing for weak instruments in linear IV regression). For informative
purposes, in the first stage of the model estimated in column (3) in Table 1 we obtain λ̂2 = 0.91 with a
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Column (4) of Table 1 presents the coefficients of the instrumental variable estimation

by distance between the citing and cited establishments. We observe the presence of a

bias in the same direction as in column (3), however the magnitude of the bias is smaller

except for the distance bin 0-300km, which is not precisely estimated. In particular,

at more than 2,000km, the coefficient is relatively similar to the baseline estimation.

Appendix G Tables 14 and 15 present the regression results including coefficients on

the residual controls. According to Wooldridge (2014), there would be evidence of

endogeneity if the parameter λ on controls in equation (3) is estimated to be statistically

different from zero. While the control is statistically significant when using only one

coefficient for all distances, none of them is statistically significant when opening the

coefficient by distance range. Especially, we do not find evidence of endogeneity at

+2,000km.

The instrument used in the instrumental variables estimation is constructed using

the 1951 flight network. We may be concerned that the 1951 flight network is correlated

with future changes of citations.53 In order to address this concern in Appendix G we

estimate equation (1) by restricting the sample to establishments in MSA-pairs that are

always indirectly connected. Results go in the same direction.

5.3 Diffusion of knowledge: Robustness

We may be concerned that there are other variables that could drive the diffusion of

knowledge and at the same time be correlated with the change in travel time. In order

to bias the coefficients, such omitted variables should be time-changing at the origin-

destination MSA pair and be systematically correlated with the change in MSA-pair

air travel time.54 We consider three potential variables that could bias our estimates:

improvements in highways, improvements in telephone communication and changes

standard error 0.042 (clustered at the non-directional MSA-pair level, ij is the same location pair as ji),
and a within R2 of 0.34 (the share of residual variation explained by the instrument, after projecting
out fixed effects). See Appendix Tables 14 and 15 for results of first stage estimations.

53We include a establishment pair fixed effect in the regressions, so a potential correlation between the
1951 flight network and the level of citations between research establishments does not affect our
estimation.

54Variables that are not time changing or that are time changing at the MSA or establishment level do
not represent a threat to identification, as they are flexibly controlled for with the fixed effects.
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in flight ticket prices. In Table 2 we show the results controlling for this variables

separately, while in Appendix G we include them simultaneously. Estimates are robust

to including these controls.

Columns (1) and (2) in Table 2 present the elasticity of citations to travel time by

distance bin. In column (1) the elasticity is bias-corrected while in column (2) it is not.

We observe that not doing the bias correction does not qualitatively affect the results.

Columns (3) to (6) include the additional controls and should be compared to column

(2).55

First, in 1947 the Congress published the official plan for the Interstate Highway

System, a nationwide infrastructure plan to improve existing highways and build new

ones (see Baum-Snow (2007), Michaels (2008), Jaworski and Kitchens (2019) and Herzog

(2021)). In case the change in travel time by air is correlated with the change in travel

time by highway, we would have an omitted variable bias if we include only one of

them in the estimation. Taylor Jaworski and Carl Kitchens have graciously shared with

us data on county-to-county highway travel time and travel costs for 1950, 1960 and

1970, which we converted to MSA-to-MSA and linearly interpolated to convert to the

same years of our air travel data. Hence we have a MSA-to-MSA time-varying measure

of highway travel time which we include as control.56

Second, other means of communication like telephone lines may have expanded

or changed their price during the period of analysis. Haines et al. (2010) contains

information on the share of households within each city with telephone lines in 1960.

We aggregate the variable to the MSA level. For each MSA-pair, we take the log of the

mean share of households with telephone lines.57 To include the variable as control

we interact it with a time dummy to make the measure time variant. The assumption

55The jackknife bias-correction due to the incidental parameter problem is computationally intensive.
Due to the computational burden and given that the bias correction does not substantially change
the results in the baseline analysis, we have not bias-corrected estimations of robustness analysis in
columns (2) to (6) of Table 2.

56In Appendix G we show the correlation of MSA-to-MSA change in air travel time and highway travel
time.

57Data from the 1962 City Data Book which comes from the US Bureau of the Census. log(mean telephone
shareij = log((telephone sharei+telephone sharej)/2). Using as control the multiplied telephone share =
telephone sharei × telephone sharej gives similar results.
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behind the interaction is that, if telephone lines expanded or changed their price over

the time period, this time-change specific to each year was proportional to the 1960 log

mean share of the MSA-pair.

Third, during the period of analysis ticket prices were set by the Civil Aeronautics

Board, so airlines could not set prices of their own tickets. Some airlines included

a sample of prices in the last page of their booklet of flight schedules, which we

digitized. In Appendix G we document multiple facts about prices. The relevant fact

for this section is that during 1962-1963 we observe a drop in prices of around 20% for

routes of more than 1,000km distance. We may be concerned that the change in flow

of knowledge is actually consequence of the change in prices, which happens to be

correlated with the change in travel time. Given that we do not have ticket prices for

each route and year, we use an estimated route price which is time varying. We obtain

estimated prices by using the sample of prices that we digitized and fitting, for each

year, price on a third degree polynomial of distance between origin and destination.

We use log of estimated prices as control.58

Column (3) to (5) of Table 2 include the described controls. All of the coefficients are

in the ball park of the baseline coefficients in both columns (1) and (2).59

Fourth, we control for a time varying effect of distance on citations. We may believe

that other variables may have an effect on the diffusion of knowledge, and those

variables are related to the distance between the citing and cited establishments. In

column (6) we include as control log(distance) interacted with a time dummy. We

observe that the coefficients reduce in magnitude, potentially due to the fact that the

change in travel time is also correlated with distance, hence controlling for a time-

varying effect of distance absorbs part of the effect. In spite of that, the coefficient for

distance of more than 2,000km remains statistically significant at the 5% level. This

result highlights the importance of the origin-destination time varying travel time data

when studying the impact of face to face interactions, pointing that travel time and

58Standard errors presented are not adjusted by the fact that the regression includes a predicted regressor
as control variable.

59Assuming the covariance across coefficients of different regressions is zero, none of the coefficients is
statistically different from the baseline coefficients either in column (1) or (2).
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distance are not equivalent measures. This result differentiates our analysis from the

one of Feyrer (2019) who uses two types of time-invariant distance (sea distance and

geographical distance) interacted with time dummies to study changes in international

trade.

In Appendix G we present additional robustness analysis. We may be concerned

that the change in diffusion of knowledge is only consequence of the change in the

geographic location of innovation. Hence, we re-estimate equation (1) with different

samples: first, using only citing establishments that were present in 1949-1953, and

second using only citing and cited establishments that were present in 1949-1953. We

find that across sub-samples the coefficient at more than 2,000km remains stable across

samples and statistically significant at the 1% level. Next, we estimate a variation of

equation (1) in the form of log-log and obtain results that are in the ballpark of the

baseline estimation.60

6 Creation of knowledge

In this section we interpret the results on increased diffusion of knowledge through

the lens of a model of knowledge spillovers. We show that the reduction in travel

time to innovative locations led to an increase in knowledge creation. The effect on

the creation of knowledge was stronger in initially less innovative locations, leading

to convergence across locations in terms of innovation. Additionally, the reduction

in travel time contributed to a change in the geographic distribution of knowledge

creation, increasing the relative importance of locations in the South and the West of

the United States.

In Appendix section A, we present a conceptual framework that guides our empirical

specifications. This framework introduces a production function of knowledge with

external returns in the form of knowledge spillovers. It shows how a measure of

potential knowledge spillovers can be constructed using the elasticity of knowledge

diffusion to a barrier to knowledge diffusion, in our case, travel time. Based on this

60See Appendix G Table 18. Elasticity at +2.000km is estimated to be -0.161 by OLS.
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PPML
bias-corrected

PPML
not bias-corrected

Dep. variable: citations citationsFiGjhkt
(1) (2) (3) (4) (5) (6)

log(travel time) × 0-300km −0.015 −0.014 −0.013 −0.016 −0.011 −0.003
(0.029) (0.041) (0.042) (0.041) (0.041) (0.042)

log(travel time) × 300-1,000km −0.085∗∗∗ −0.095∗∗∗ −0.091∗∗∗ −0.091∗∗∗ −0.096∗∗∗ −0.066∗∗
(0.024) (0.025) (0.026) (0.025) (0.025) (0.029)

log(travel time) × 1,000-2,000km −0.096∗∗∗ −0.092∗∗ −0.086∗∗ −0.075∗ −0.100∗∗ −0.037
(0.032) (0.041) (0.043) (0.041) (0.042) (0.050)

log(travel time) × +2,000km −0.166∗∗∗ −0.177∗∗∗ −0.170∗∗∗ −0.167∗∗∗ −0.185∗∗∗ −0.112∗∗
(0.035) (0.048) (0.050) (0.049) (0.048) (0.056)

N obs. effective 5, 147, 161 5, 147, 161 5, 147, 161 5, 147, 161 5, 147, 161 5, 147, 161
R2 0.88 0.88 0.88 0.88 0.88 0.88

Controls:
log(highway time) - - Yes - - -
log(telephone share) × time - - - Yes - -
log(price) - - - - Yes -
log(distance) × time - - - - - Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 2: Robustness: Elasticity of citations to travel time
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of citationsFiGjhkt = exp [∑d βd 1{distanceij ∈ d} log(travel timeijt) +

FEFiGjhk + FEFiht + FEGjkt] × εFiGjhkt, for citations of patents filed by establishment of firm F in location i, technology h and time period t, to patents filed by
establishment of firm G in location j and technology k. travel timeijt is the travel time in minutes between location i and j at time period t, and it is set to 1 when
i = j. d are distance intervals: [0 − 300km], (300km − 1000km], (1000km − 2000km], (2000km − max]. Column (1) presents jackknife bias-corrected coefficients and
bias-corrected bootstrap standard errors. Column (2) repeats column (1) without bias-correction. Relative to (2), columns (3) through (6) contain additional controls.
Column (3) controls for log highway time between i and j at period t. Column (4) controls for the log of the mean share of households with telephone line in
1960 in ij pair interacted with a time dummy. Column (5) controls for log flight ticket price between i and j at period t. Column (6) controls for log distance ij
interacted with a time dummy. When FiGjhk has positive citations in at least one period and no citations in another, we attribute zero citations in the missing
period. Columns (2) through (6) present standard errors clustered at the non-directional location in parentheses (ij is the same non-directional location pair as ji).
R2 is computed as the squared correlation between observed and fitted values.



framework, we first construct an empirical measure of potential knowledge spillovers,

which we label Knowledge Access, and then estimate the elasticity of new knowledge to

knowledge access.

We construct a measure of Knowledge Access (KAiht) that shows how easy it is in time

period t for research establishments in location i and technology h to access knowledge

created in other locations.61 We compute Knowledge Access as follows:

KAiht = ∑
k

ωhk ∑
j, j ̸=i

Patent stockjk,t=1953 × travel time
β

ijt (4)

where, from right to left, travel timeβ
ijt is the travel time between locations i and j

at time period t, to the power of the elasticity of diffusion of knowledge to travel

time. Patent stockjk,t=1953 is the discounted sum of patents produced in location j and

technology k between 1941 and 1953.62,63 ωhk is the share of citations of technology

h that go to technology k at the aggregate level in 1949-1953, similar to an input-

output weight.64 Then, KAiht is a weighted sum of the patent stock in each other

location and technology, where the weights are how easy it is to access that patent stock

(travel timeβ
ijt) multiplied by how relevant that knowledge is (ωhk).

In order to reduce concerns of potential endogeneity of accessing knowledge and

creating knowledge, we exclude the patent stock in the location itself from the sum (we

only use j ̸= i).65

61This measure is an extension of Appendix equation (2) to an include multiple technology categories
and time periods.

62Patent stockjk,t=1953 = ∑y∈[1941,1953] Patentsjky × (1−depreciation rate)1953−y . We use a depreciation
rate of 5%, which is in the range of average depreciation rates of R&D found by De Rassenfosse and
Jaffe (2017).

63Location j and technology k would be the source location and technology, while i and h would be the
destination location and technology.

64ωhk = citationshk,t=[1949,1953]/citationsh,t=[1949,1953] is included to weight each source technology cate-
gory k by how important it is for the destination technology category h.

65The theory makes no distinction on whether the knowledge stock is in i or j, so in principle we
would like to include the patent stock of i in the knowledge access of i. However, this could lead to
econometric problems. First, we do not have exogenous variation of travel time within i. Second, if
knowledge creation in i is a persistent process, by including the patent stock of i we would introduce
a mechanical relationship between knowledge access and knowledge creation. Hence, our baseline
measure of knowledge access of i does not consider the patent stock of i. This is similar to what
Donaldson and Hornbeck (2016) in the case of the empirical approximation of their Market Access
measure.
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The measure of Knowledge Access contains across-time variation within a location-

technology ih, and cross-sectional variation across technologies h within a location i.

The across-time variation is only due to the change in travel time between locations,

every other component of the measure is fixed to its 1949-1953 level. The cross-sectional

variation comes from a distribution of Patent stockjk,t=1953 within source technologies

k that is not uniform across source locations j, and from the input-output weights

ωhk. The joint across-time and cross-sectional variation means that if travel time for ij

reduces, there will be a differential change in Knowledge Access across technologies h

within location i which depends on the initial patent stock and input-output weights.

The degree with which changes in travel time are reflected in access to knowledge

depend on how important travel time is to get knowledge to diffuse, which is the

elasticity of knowledge diffusion to travel time that we estimated in Section 5. As the

baseline we use β = −0.206, which is the elasticity of citations to travel time at more

than 2,000 km estimated by IV-PPML. In Appendix Table 27 we do robustness analysis

with distance-specific β and in Appendix Table 30 we do sensitivity analysis of the

results to changing the value of β.

The measure of Knowledge Access allows us to translate changes in travel time between

pairs of MSAs into a single location-technology specific characteristic, and to represent

it on the same scale as patent growth in Figure 3. Figure 6 depicts the time change in

log Knowledge Access from 1951 to 1966, averaged across technologies within each MSA.

Darker colors represent higher growth in Knowledge Access. As with patent growth, we

observe that MSAs that had the strongest growth are generally located in the South

and the West of the United States, far from the knowledge centers of New York and

Chicago. The reduction in travel time was larger between locations far apart, implying

that locations which happened to be far from knowledge centers increased relatively

more their Knowledge Access.
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Figure 6: Change in log Knowledge Access 1951 - 1966

6.1 Creation of knowledge: Baseline estimation

With the measure of Knowledge Access we then adapt Appendix equation (1) to estimate:

PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht (5)

where PatentsFiht are patents applied by establishment of firm F in location i and

technology h at time period t. The measure of knowledge access KAiht is at the iht

location-technology-time level, meaning that all establishments within an iht share the

same level of knowledge access. The parameter of interest ρ is the elasticity of (the

creation of new) patents to knowledge access. In the presence of knowledge spillovers

as presented in the conceptual framework in Section A, we would expect ρ to be positive

and statistically significant.

The fixed effect FEFih absorbs time invariant characteristics at the firm-location-

technology level, as for example the productivity of the establishment-technology. This

fixed effect is more fine grained than just a location-technology, which would absorb

the comparative advantage of a location in a certain technology. The fixed effect FEit

absorbs characteristics that are time variant at the location level. For example, an
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inflow of population that shift demand of technology, or changes in R&D subsidies

that are location specific and common across all technologies would be absorbed

by this fixed effect. Also, better flight connectivity could spur economic activity as

shown in Campante and Yanagizawa-Drott (2017), leading to an increase in patenting

activity in the location. While this could potentially be a channel through which jet

airplanes affected innovation, this channel wouldn’t be variation used for identifying

the coefficient of interest. If that increase is general across technologies within the

location, then FEit would absorb it. Finally, the fixed effect FEht absorbs characteristics

that are time variant at the technology level. If technologies had different time-trends at

the national level, then the fixed effect would control for these trends in a flexible way.

The inclusion of FEFih implies that only across-time variation within an establishment-

technology is used to identify ρ. The inclusion of FEit implies that only variation across-

technologies within a location-time is exploited, so across-time variation is compared

across establishments within a location, and not across locations. The inclusion of FEht

implies that the identifying across-time variation is conditional on aggregate trends of

the technology. In short, identification of ρ relies on across-time changes in the amount

of patents and knowledge access of an establishment, relative to other establishments

in the same location, conditional on aggregate technological trends.

Column (1) in Table 3 shows the result of estimating equation (5). The elasticity

of patents to knowledge access is estimated to be 9.11, significant at the one percent

level. The average change in knowledge access at the location-technology level is 10.0%,

implying that on average the change in travel time predicts a 3.5% average yearly

growth rate of patents.66,67 The observed average yearly growth rate of new patents at

the location-technology is 4.5%.68 Comparing the predicted and observed growth rates,

66Due to entry, we cannot compute the growth rate at the establishment-technology level for 71%
of establishment-technology, given that they had 0 patents in the initial time period. In the case
of location-technology, 4% did not have patents in the initial period. We the prefer to interpret
coefficients using location-technology growth rates, which we compute using the remaining 95% of
location-technologies that had positive patents in the initial time period.

67The elasticity of 9.11 predicts an increase of 91.3% over the time period of 19 years (9.11 × 0.10 ≈ 0.913,
without rounding in intermediate steps), which translates into a 3.5% average yearly growth rate
((1+0.913)1/19-1≈0.035).

68From the first time period (1949-1953) to the last time period (1964-1968) we observe an average growth
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PPML IV PPML IV PPML
centered

Dependent Variable: Patents
(1) (2) (3) (4) (5) (6)

log(knowledge access) 9.11∗∗∗ 8.41∗∗ 10.20∗ 9.39 10.22∗∗ 7.62
(3.29) (3.31) (5.81) (5.85) (5.06) (5.12)

log(knowledge access) × 3rd quartile 1.86∗∗∗ 2.10∗∗∗ 3.54∗∗∗
(0.53) (0.60) (1.11)

log(knowledge access) × 2nd quartile 3.42∗∗∗ 3.79∗∗∗ 6.89∗∗∗
(0.81) (0.75) (2.09)

log(knowledge access) × 1st quartile 4.50∗∗∗ 5.20∗∗∗ 8.05∗∗∗
(1.17) (1.01) (2.24)

R2 0.85 0.85 0.85 0.85 0.85 0.85
N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 3: Effect of knowledge access on patents, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht =

exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for patents filed by establishment of firm F in location i, tech-
nology h and time period t. KAiht is knowledge access of establishments in location i technology h and time period t.
Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using
patents filed in 1949-1953. Higher quartile indicates higher initial level of innovativeness. The fourth quartile is used
as reference category. Columns (3) and (4) show the result of two step instrumental variables estimation, where KAiht

is instrumented with K̃Aiht, knowledge access computed using the counterfactual travel time that would have taken
place if routes were fixed to the ones in 1951 and each year routes were operated at the average airplane of the year.
Columns (5) and (6) use a centered version of K̃Aiht following Borusyak and Hull (2023) by subtracting the expected
instrument which is computed using random flight networks. Standard errors are presented in parentheses. Column
(1) and (2) present clustered at the location-technology ih. Column (3) and (4) present bootstrap standard errors. R2 is
computed as the squared correlation between observed and fitted values.
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the improvement in air travel time has the power to account for 78% of the observed

average yearly patent growth rate.69

We aggregate predicted changes in patent growth at the Census Region level. The

change in travel time predicts a yearly growth rate 0.75 percentage points higher in the

South and the West relative to the Midwest and Northeast. In the data we observe 2.04

percentage points difference in the growth rate, implying that the change in travel time

can account for 37% of the observed differential growth rate.70

Section 4.1 showed that in the data, initially less innovative MSAs had a larger

growth rate of patenting. In column (2) in Table 3 we investigate if the increase in

knowledge access had an heterogeneous effect on the amount of new patents created

depending on the initial innovativeness of the location i in technology h. We compute

the quartile of innovativeness of location i in technology h in the time period 1949-1953

and interact it with log(KAiht).71 We use as reference category the highest quartile of

initial innovativeness, hence the coefficient on log(KAiht) without interaction is the

elasticity for the highest quartile. Coefficients on other quartiles should be interpreted

relative to the highest quartile.

We find that the coefficients on lower quartiles of initial innovativeness are positive

and statistically different from the coefficient in the highest quartile. Thus, knowledge

access had a greater effect on patenting for establishments that were located in initially

less innovative locations.72 Given the difference in the coefficients, the increase in

knowledge access predicts an average yearly growth of new patents of 4.5% for the ini-

rate of new patents of 129%. We obtain 0.045 ≈ ((1 + 1.290)1/19 − 1
6978 ≈ 3.5/4.4 × 100
70Using the coefficient of column (1) in Table 3, we compute the MSA-technology predicted level of

patents for 1966 and aggregate it at the Census region - technology level. Then, we compute yearly
growth rates within each region-technology and take averages across technologies. Next, we take the
average between S and W, and MW and NE, and finally compute the differential predicted growth. If
we use the quartile-specific coefficients of column (2) in Table 3 we obtain a predicted differential
growth rate of 0.87 percentage points, which implies that the change in travel time can account for
43% of the observed differential growth rate.

71We use the quartiles of innovativeness defined in section 4.1, computed using the amount of patents
of location i in technology h filed in the time period 1949-1953. Each location i has (potentially)
a different value quartile in each technology h. The 1st quartile refers to the 25% initially least
innovative MSAs in technology h.

72A given percentage change in knowledge access led to a stronger increase in patenting in initially less
innovative locations.
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tially lowest quartile of innovativeness, while it predicts 3.4% for the highest quartile.73

The change in knowledge access predicts differential growth rate of 1.1 percentage

points. In the data we observe that the average yearly growth rate of patents in the

lowest quartile is 5.2 percentage points higher than in the highest quartile. Comparing

the predicted and observed differential growth rates, the improvement in knowledge

access as consequence of the reduction in travel time explains 21% of the difference in

growth rates of new patents between locations in the lowest and highest quartile of

innovativeness.74

In Appendix Table 21 we present results estimating equation 5 weighting patents by

quality using the breakthroughness level computed by Kelly et al. (2021).75 We find a

larger coefficient in magnitude, providing evidence that the results are not driven by the

granting of lower quality patents. Interestingly, we find similar results as in the baseline

if we use a quality-weighted version of knowledge access. This finding connects to

Iaria et al. (2018), which documents how World War I and the subsequent boycott of

Central scientists disrupted international knowledge flows. Their analysis reveals that

reduced access to frontier research from abroad disproportionately hindered scientists

who depended on top-quality foreign research.

6.2 Creation of knowledge: Instrumental variables estimation

As in Section 5, we may be concerned that decisions of the regulator or airlines which

affect travel time are endogenous to the diffusion of knowledge and consequently to

knowledge access. Therefore, we construct an instrument for knowledge access in

73The change in knowledge access for the lowest quartile is on average 10.15%, which multiplied by
the coefficient 12.91 (obtained by doing 8.41+4.50=12.91) gives a predicted growth of 131% over 19
years. Translated into average yearly growth it is 4.5% = [(1 + 1.31)(1/19) − 1] × 100. For the highest
quartile, knowledge access changed on average 10.56%, which multiplied by the coefficient 8.41
predicts 89% growth rate, which is 3.4% yearly growth rate.

7421% ≈ 1.1/5.2 × 100
75We use the patent’s 5-year percentile of breakthroughness after demeaning by year fixed effects

computed by Kelly et al. (2021). The measure of breakthroughness is computed by comparing the
patent text of the focal patent with previous and future patents in a 5-year window to find whether
the patent introduces new concepts that were not common before but became common after, making
a breakthrough. Using the measure computed with 10-year data gives similar results. Importantly, the
computation of the measure does not use citation data.
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which instead of using observed travel time, we use the fictitious travel time presented

in section 3.2 in which routes are fixed to the ones in 1951 and each route is operated

with the average airplane of the year:

K̃Aiht = ∑
k

ωhk ∑
j, j ̸=i

Patent stockjk,t=1953 × (instrumental travel timeijt)
β (6)

Recently, Borusyak and Hull (2023) have pointed out that when multiple sources

of variation are combined to define treatment according to a known formula, treat-

ment exposure can be non-random. Failing to account for this difference in expected

treatment can create omitted variable bias. Our instrument combines cross-sectional

variation stemming both from the 1951 flight network and the spatial distribution of

the knowledge stock in the early 1950s, with variation across time, stemming from the

nationwide rollout of jets. A MSA like San Francisco that is connected to knowledge

hubs like Chicago via non-stop, long-distance flights would have a large reduction in

travel time as consequence of jets and see a large increase in knowledge access. On

the other hand, a MSA like Boston which is nearby a major innovation hub like New

York, would see a lower increase in knowledge access. In a more general way, MSAs

located far away from every other location, in particular the innovative ones, have more

possible long-distance connections and are thus more prone to have larger increases

in knowledge access due to faster airplanes, creating an omitted variable bias if not

accounted for.

Following Borusyak and Hull (2023), we recenter our instrument by subtracting

the expected value of the instrument. To construct the expected instrument we draw

a set of random counterfactual networks, and under each of those we compute the

counterfactual travel time and counterfactual value of instrumental knowledge access.

Counterfactual networks contain the underlying observed geography and pre-existing

distribution of knowledge, hence locations farther apart from innovation centers see a

larger increase in knowledge access even in random networks. We then take the average

across counterfactual networks to obtain the expected instrument.76 By recentering

76Details on the construction of the centered instrument are presented in Appendix Section G.2.2.
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the instrument we purge it from the non-randomness that might be introduced by

geography. The recentered instrument is:

log(K̃Aiht)centered = log(K̃Aiht)− E[log(K̃Aiht)] (7)

We implement the instrumental variables estimation by control function as in Section

5. Results are presented in Table 3. Columns (3) and (4) show results using the non-

centered instrument while columns (5) and (6) use the centered version. The coefficients

do not show an important change and the convergence prediction obtained using non-

instrumented PPML remains valid.77,78

Figure 7 shows in the left panel the patent growth observed in the data (it replicates

Figure 3), while in the right panel it is the predicted patent growth. We compute the

prediction using the observed change in travel time and quartile specific elasticities of

column (2) in Table 3. Similarly to what is observed in the data, the change in travel

time predicts a larger patenting growth rate in the South and the West relative to the

Northeast and Midwest.

Figure 7: Observed vs. predicted patent growth 1951 - 1966

77The first stage of the model estimated in column (3) of Table 3 gives a λ̂2 = 1.01 with standard error
0.03 (clustered at the location-technology level ih), and a within R2 of 0.53.

78Using non-centered IV estimates, the predicted yearly patent growth rate in the lowest quartile is 4.9%
while it is 3.7% in the highest quartile. The predicted differential growth rate is then 1.2 percentage
points, meaning that the change in knowledge access can explain (1.2/5.3) × 100 ≈ 23% of the
observed differential growth rate.
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The result in column (2) implies that a given change in Knowledge Access had a

stronger effect on patenting growth in less innovative locations. In other words, knowl-

edge spillovers as an externality had a more predominant role in the production of

knowledge in locations that initially produced relatively fewer patents. Theoretically,

this result implies that the parameter ρ in equation (1) varies depending on the level

of previous production of knowledge of location i. Empirically the implication is that

a given increase in knowledge spillovers leads to innovation convergence across lo-

cations. As seen in section 4.1, during 1949-1968 we observe innovation-convergence

across locations and that is exactly what the estimated coefficients predict following a

reduction in travel time.

In order to understand the convergence result and compare it with other findings

in the literature it is important to remember that commercial airplanes during 1950s

and 1960s were a means of transportation mainly for people. On the other hand, other

transportation improvements as those in water transport, railroads or highways also

contain another ingredient: they were used to carry goods. Hence, other means of

transportation combine an impact on both face to face interactions and trade. The

effect on trade may be particularly relevant in the presence of economics of scale in

production, which may act as a force for concentration of production. Pascali (2017)

finds that the introduction of the steam engine vessels in the second half of the 19th

century had an impact on international trade that led to economic divergence between

countries. Faber (2014) finds that the expansion of the highway system in China led to

a reduction of GDP growth in peripheral counties, with evidence suggesting a trade

channel due to reduction in trade costs. In our setup, the introduction of jet airplanes

represented a big shock to the mobility of people while not affecting significantly the

transport of merchandise. Therefore, studying the introduction of jet airplanes allows

us to focus on improved face to face interactions, while the trade channel would be a

second order effect.
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6.3 Creation of knowledge: Robustness

In this section we show that the effect of Knowledge Access on the creation of new patents

and the convergence effect remains after including different controls. Table 4 shows the

results.

Jaworski and Kitchens (2019) show that improvements in the Interstate Highway

System led to local increases in income through an increased market access. In our set

up, if the effect of market access affects innovation in the same way across technologies,

then it would be absorbed by the MSA-time fixed effect FEit in equation (5). However,

if the effect of market access on innovation varies across technologies, then it would be

a confounder. To control for this potential confounder, we compute market access by

highway and interact it with a technology dummy. We compute market access as:

Market Accessit = ∑
j

Populationj,t=1950 × τθ
ijt (8)

where Populationj,t=1950 is population in MSA j in 1950, τijt are the shipping costs

provided in the data of Taylor Jaworski and Carl Kitchens computed using each year’s

highway driving distance, highway travel time, petrol cost and truck driver’s wage. θ

is the elasticity of trade to trade costs which we set to -8.28, the preferred value of Eaton

and Kortum (2002) and in the range of many other estimates in the literature (Head and

Mayer (2014), Caliendo and Parro (2015), Donaldson and Hornbeck (2016)). Columns

(3) and (4) of Table 4 show the results, we do not observe an important difference with

the baseline estimates.

Campante and Yanagizawa-Drott (2017) shows that better connectivity by airplane

leads to an increase in economic activity as measured by satellite-measured night light.

Söderlund (2023) shows that an increase in business travel in the late 1980s and early

1990s led to an increase in trade between countries. In a similar way to knowledge

access, we could think that better connectivity by airplane could have led to an increase

in market access due to a reduction in information frictions, with goods being shipped

by land. Similarly to highway market access, if the effect of market access by airplane

is common to all technology categories then it would be absorbed by the MSA-time
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fixed effect FEit. In order to account for a technology-specific effect, we construct

a measure of airplane market access and interact it with a technology dummy. The

measure of airplane market access is similar to equation (8) where τ is the travel time

by airplane and θ is set to -1.304, the elasticity of trade to travel time from Söderlund

(2023). The results are shown in columns (5) and (6) of Table 4. While the coefficients in

all quartiles are reduced, the estimated value of ρ is positive and significant and the

result on convergence remains.

Potential contemporaneous improvements in other means of communication, like

telephones, could have spurred the creation of new patents. In columns (7) and (8)

we include the log of the MSA’s share of households with telephones in 1960 and

double-interact it with a technology dummy and a time dummy. The results remain

invariant with respect to the baseline.

Another potential explanation for the increase of patenting could be that better con-

nectivity decreased technology-specific financial frictions. The potential reduction in

financial frictions, rather than a confounder, would be a mechanism through which

airplanes increased innovation. However, according to Jayaratne and Strahan (1996)

during 1950s and 1960s interstate lending and bank branching were limited. Prior to

the 1970s, banks and holdings were restricted in their geographic expansion within and

across state borders. Additionally, the Douglas Amendment to the Bank Holding Com-

pany Act prevented holding companies from acquiring banks in other states. Therefore,

it is unlikely that interstate bank financing would be a driving force. Nonetheless, if

other sector-specific modes of financing like venture capital were active, they could be

driving the results. In Appendix G we construct multiple measures of access to capital

by using market capitalization of patenting firms listed in the stock market. The results

present suggestive evidence that access to capital is not driving the results.

Finally, in Appendix G we include additional robustness checks. We compute differ-

ent versions of Knowledge Access: we use distance-specific β from section 5, we consider

the patent stock only of locations j far from i, we do sensitivity analysis using different

values of β. Also, we re estimate the effects by quartile of initial innovativeness using

patents per capita. Last, we re-do the baseline regression using OLS estimation. Re-
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PPML
Dependent Variable: Patents

(1) (2) (3) (4) (5) (6) (7) (8)

log(knowledge access) 9.11∗∗∗ 8.41∗∗ 8.33∗∗ 7.40∗∗ 5.83∗ 5.45∗ 9.30∗∗∗ 8.33∗∗∗

(3.29) (3.31) (3.30) (3.31) (3.20) (3.22) (3.08) (3.08)
log(knowledge access) × 3rd quartile = 0.50 1.86∗∗∗ 1.95∗∗∗ 1.86∗∗∗ 2.01∗∗∗

(0.53) (0.52) (0.53) (0.51)
log(knowledge access) × 2nd quartile = 0.25 3.42∗∗∗ 3.50∗∗∗ 3.38∗∗∗ 3.55∗∗∗

(0.81) (0.81) (0.80) (0.82)
log(knowledge access) × 1st quartile = 0.00 4.50∗∗∗ 4.62∗∗∗ 4.57∗∗∗ 4.67∗∗∗

(1.17) (1.17) (1.17) (1.19)

N obs. effective 991,480 991,480 991,480 991,480 991,480 991,480 991,480 991,480
R2 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Controls:
log(Highway market access) × technology - - Yes Yes - - - -
log(Airplane market access) × technology - - - - Yes Yes - -
log(Telephone share) × technology × time - - - - - - Yes Yes
∗∗∗p < 0.01; ∗∗p < 0.05; ∗p < 0.10

Table 4: Elasticity of new patents to knowledge access, by MSA innovativeness quartile
Column (1) shows the result of Poisson Pseudo Maximum Likelihood (PPML) estimation of PatentsFiht = exp [ ρ log(KAiht) + FEFih + FEit + FEht] × ξFiht, for
patents filed by establishment of firm F in location i, technology h and time period t. KAiht is knowledge access of establishments in location i technology h and
time period t. Column (2) opens the coefficient ρ by the quartile of innovativeness of location i within technology h, computed using patents in 1949-1953. Higher
quartile indicates higher initial level of innovativeness. The fourth quartile is used as reference category. Relative to columns (1) and (2), columns (3) and (4) control
for technology specific effect of log(highway market access), columns (5) and (6) control for technology specific effect of log(airplane market access), columns (7)
and (8) control for technology and time specific effect of log(telephone share). Standard errors clustered at the location-technology ih are presented in parentheses.
R2 is computed as the squared correlation between observed and fitted values.



sults go in the same direction: an increase in knowledge access leads to an increase in

patenting and the effect is stronger in initially less innovative locations.

7 Conclusion

This paper studies how frictions to the mobility of people affect the geography of

innovation in the context of the early Jet Age in the United States. With newly digitized

data on airlines’ flight schedules, we construct a dataset of the flight network in the

United States during the 1950s and 1960s. We document the large reduction in air travel

time that jet airplanes brought about: around 11 hours, a 50% reduction, for coast-to-

coast return trip. Combined with patent data, we find that the reduction in travel time

increased knowledge diffusion, especially between research establishments located far

apart. The increase in diffusion of knowledge created long-distance spillovers and led

to the production of new knowledge.

Our results point to jet airplanes as an important driver behind major changes in the

geography of innovation in the United States post World War II: a catching up of the

South and the West with the Northeast and the Midwest, and initially less innovative

MSAs reducing the gap with more innovative ones.

The results provide policy-relevant insights regarding the impact of passenger trans-

port infrastructure on the emergence of technology clusters. Large R&D policies, like

the recent CHIPS and Science Act, frequently include a place-based component to

increase technology capacity in regions that lag behind (Gruber and Johnson (2019),

Gross and Sampat (2023)). Our results show that connectivity to existing clusters can

lead to an increase of local innovation and act as a convergence force between regions.
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